4,196 research outputs found

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Cities and Drones: What Cities Need to Know about Unmanned Aerial Vehicles (UAVs)

    Get PDF
    NLC's municipal guide, Cities and Drones, is designed to serve as a primer on drones for local officials, providing insight into the recently released federal rules relating to drone operation, as well as offering suggestions for how local governments can craft their own drone ordinances to encourage innovation while also protecting their cities.Drones have the potential to revolutionize many industries and city services, particularly as their technology advances. There are many applications for drones within the public sector at the local and state level. Drones can be used for law enforcement and firefighting, as rural ambulances, and for inspections, environmental monitoring, and disaster management. Any commercial arena that involves outdoor photography or visual inspection will likely be experimenting with drones in the near future, as will retailers who want to speed up package delivery.However, drones also present challenges. There are some safety issues, for instance, when operators fly their drones over people or near planes. City residents often have privacy concerns when any small device hovering nearby could potentially be taking photos or video. The FAA's final rule on drones left some opportunity for city governments to legislate on this issue. Rather than ban them outright, city officials should consider how this new technology might serve residents or enhance city services

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    Innovative Solutions for Navigation and Mission Management of Unmanned Aircraft Systems

    Get PDF
    The last decades have witnessed a significant increase in Unmanned Aircraft Systems (UAS) of all shapes and sizes. UAS are finding many new applications in supporting several human activities, offering solutions to many dirty, dull, and dangerous missions, carried out by military and civilian users. However, limited access to the airspace is the principal barrier to the realization of the full potential that can be derived from UAS capabilities. The aim of this thesis is to support the safe integration of UAS operations, taking into account both the user's requirements and flight regulations. The main technical and operational issues, considered among the principal inhibitors to the integration and wide-spread acceptance of UAS, are identified and two solutions for safe UAS operations are proposed: A. Improving navigation performance of UAS by exploiting low-cost sensors. To enhance the performance of the low-cost and light-weight integrated navigation system based on Global Navigation Satellite System (GNSS) and Micro Electro-Mechanical Systems (MEMS) inertial sensors, an efficient calibration method for MEMS inertial sensors is required. Two solutions are proposed: 1) The innovative Thermal Compensated Zero Velocity Update (TCZUPT) filter, which embeds the compensation of thermal effect on bias in the filter itself and uses Back-Propagation Neural Networks to build the calibration function. Experimental results show that the TCZUPT filter is faster than the traditional ZUPT filter in mapping significant bias variations and presents better performance in the overall testing period. Moreover, no calibration pre-processing stage is required to keep measurement drift under control, improving the accuracy, reliability, and maintainability of the processing software; 2) A redundant configuration of consumer grade inertial sensors to obtain a self-calibration of typical inertial sensors biases. The result is a significant reduction of uncertainty in attitude determination. In conclusion, both methods improve dead-reckoning performance for handling intermittent GNSS coverage. B. Proposing novel solutions for mission management to support the Unmanned Traffic Management (UTM) system in monitoring and coordinating the operations of a large number of UAS. Two solutions are proposed: 1) A trajectory prediction tool for small UAS, based on Learning Vector Quantization (LVQ) Neural Networks. By exploiting flight data collected when the UAS executes a pre-assigned flight path, the tool is able to predict the time taken to fly generic trajectory elements. Moreover, being self-adaptive in constructing a mathematical model, LVQ Neural Networks allow creating different models for the different UAS types in several environmental conditions; 2) A software tool aimed at supporting standardized procedures for decision-making process to identify UAS/payload configurations suitable for any type of mission that can be authorized standing flight regulations. The proposed methods improve the management and safe operation of large-scale UAS missions, speeding up the flight authorization process by the UTM system and supporting the increasing level of autonomy in UAS operations

    UAV tracking module proposal based on a regulative comparison between manned and unmanned aviation

    Get PDF
    Purpose: The aim of this study is twofold. First is to compare manned and unmanned aviation regulations in the context of ICAO Annexes to identify potential deficiencies in the international UAV legislations. Second is to propose a UAV monitoring module work flow as a solution to identified deficiencies in the international UAV regulations. Design/methodology: In the present study, firstly the regulations used in manned aviation were summarized in the context of ICAO Annexes. Then along with an overview of the use of UAVs, international UAV regulations have been reviewed with a general perspective. In addition, a comparison was made on whether contents of ICAO Annexes find a place in common international UAV regulations in order to understand areas to be developed in the international UAV regulations, and to better understand the different principles between manned and unmanned air transport. In the last section, we present a UAV tracking module (UAVTram) in line with the above-mentioned comparison between manned and unmanned aviation and the identified deficiencies in the international UAV regulations. Findings: The international UAV regulations should be developed on the basis of airport airspace use, detection, liabilities, sanctions of violations, and updating of regulation. Proposed UAVTram has potential to offer real-time tracking and detection of UAVs as a solution to malicious use of UAVs. Research limitations/implications: Our study is not exempt from limitations. Firstly, we didn’t review all UAV regulations because it needs a considerable amount of efforts to check out all the UAV regulations pertinent to different areas of the world. It is the same case for manned aviation as we used only ICAO Annexes to contextually compare with UAV regulations. Practical implications: From the practical perspective, studies introducing new technologies such as systems that help detection of remote pilots causing trouble and agile defense systems will give valuable insights to remove individual UAV threats. Originality/value: We didn’t find any study aiming to compare manned and unmanned aviation rules in search of finding potential deficiencies in the UAV regulations. Our study adopts such an approach. Moreover, our solution proposal here uses Bluetooth 5.0 technology mounted on stationary transmitters which provides more effective range with higher data transfer. Another advantage is that this work is projected to be supported by Turkish civil aviation authority, DGCA. This may accelerate efforts to make required real-time tests.Peer Reviewe

    Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases

    Get PDF
    The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes(UASs) can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1) micro aerial vehicles (MAVs); (2) vertical take-off and landing (VTOL); and, (3) low-altitude short endurance (LASE) systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL), which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change

    Safety Considerations for Operation of Unmanned Aerial Vehicles in the National Airspace System

    Get PDF
    There is currently a broad effort underway in the United States and internationally by several organizations to craft regulations enabling the safe operation of UAVs in the NAS. Current federal regulations governing unmanned aircraft are limited in scope, and the lack of regulations is a barrier to achieving the full potential benefit of UAV operations. To inform future FAA regulations, an investigation of the safety considerations for UAV operation in the NAS was performed. Key issues relevant to operations in the NAS, including performance and operating architecture were examined, as well as current rules and regulations governing unmanned aircraft. In integrating UAV operations in the NAS, it will be important to consider the implications of different levels of vehicle control and autonomous capability and the source of traffic surveillance in the system. A system safety analysis was performed according to FAA system safety guidelines for two critical hazards in UAV operation: midair collision and ground impact. Event-based models were developed describing the likelihood of ground fatalities and midair collisions under several assumptions. From the models, a risk analysis was performed calculating the expected level of safety for each hazard without mitigation. The variation of expected level of safety was determined based on vehicle characteristics and population density for the ground impact hazard, and traffic density for midair collisions. The results of the safety analysis indicate that it may be possible to operate small UAVs with few operational and size restrictions over the majority of the United States. As UAV mass increases, mitigation measures must be utilized to further reduce both ground impact and midair collision risks to target levels from FAA guidance. It is in the public interest to achieve the full benefits of UAV operations, while still preserving safety through effective mitigation of risks with the least possible restrictions. Therefore, a framework was presented under which several potential mitigation measures were introduced and could be evaluated. It is likely that UAVs will be significant users of the future NAS, and this report provides an analytical basis for evaluating future regulatory decisions
    • …
    corecore