75,125 research outputs found

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    Aspect-Oriented Programming

    Get PDF
    Aspect-oriented programming is a promising idea that can improve the quality of software by reduce the problem of code tangling and improving the separation of concerns. At ECOOP'97, the first AOP workshop brought together a number of researchers interested in aspect-orientation. At ECOOP'98, during the second AOP workshop the participants reported on progress in some research topics and raised more issues that were further discussed. \ud \ud This year, the ideas and concepts of AOP have been spread and adopted more widely, and, accordingly, the workshop received many submissions covering areas from design and application of aspects to design and implementation of aspect languages

    A Programming Environment Evaluation Methodology for Object-Oriented Systems

    Get PDF
    The object-oriented design strategy as both a problem decomposition and system development paradigm has made impressive inroads into the various areas of the computing sciences. Substantial development productivity improvements have been demonstrated in areas ranging from artificial intelligence to user interface design. However, there has been very little progress in the formal characterization of these productivity improvements and in the identification of the underlying cognitive mechanisms. The development and validation of models and metrics of this sort require large amounts of systematically-gathered structural and productivity data. There has, however, been a notable lack of systematically-gathered information on these development environments. A large part of this problem is attributable to the lack of a systematic programming environment evaluation methodology that is appropriate to the evaluation of object-oriented systems

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Automation and schema acquisition in learning elementary computer programming: Implications for the design of practice

    Get PDF
    Two complementary processes may be distinguished in learning a complex cognitive skill such as computer programming. First, automation offers task-specific procedures that may directly control programming behavior, second, schema acquisition offers cognitive structures that provide analogies in new problem situations. The goal of this paper is to explore what the nature of these processes can teach us for a more effective design of practice. The authors argue that conventional training strategies in elementary programming provide little guidance to the learner and offer little opportunities for mindful abstraction, which results in suboptimal automation and schema acquisition. Practice is considered to be most beneficial to learning outcomes and transfer under strict conditions, in particular, a heavy emphasis on the use of worked examples during practice and the assignment of programming tasks that demand mindful abstraction from these examples

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205
    • …
    corecore