1,279 research outputs found

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Ann: A domain-specific language for the effective design and validation of Java annotations

    Full text link
    This is the author’s version of a work that was accepted for publication in Computer Languages, Systems & Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Languages, Systems & Structures, VOL 45, (2016) DOI 10.1016/j.cl.2016.02.002This paper describes a new modelling language for the effective design and validation of Java annotations. Since their inclusion in the 5th edition of Java, annotations have grown from a useful tool for the addition of meta-data to play a central role in many popular software projects. Usually they are not conceived in isolation, but in groups, with dependency and integrity constraints between them. However, the native support provided by Java for expressing this design is very limited. To overcome its deficiencies and make explicit the rich conceptual model which lies behind a set of annotations, we propose a domain-specific modelling language. The proposal has been implemented as an Eclipse plug-in, including an editor and an integrated code generator that synthesises annotation processors. The environment also integrates a model finder, able to detect unsatisfiable constraints between different annotations, and to provide examples of correct annotation usages for validation. The language has been tested using a real set of annotations from the Java Persistence API (JPA). Within this subset we have found enough rich semantics expressible with Ann and omitted nowadays by the Java language, which shows the benefits of Ann in a relevant field of application.We would like to thank the reviewers for their detailed comments, which helped us in improving a previous version of this paper. This work has been partially supported by the Spanish Ministry of Economy and Competitivity with project FLEXOR (TIN2014-52129-R) and the Community of Madrid with project SICOMORO-CM (S2013/ICE-3006)

    From Java to real-time Java : A model-driven methodology with automated toolchain

    Get PDF
    Real-time systems are receiving increasing attention with the emerging application scenarios that are safety-critical, complex in functionality, high on timing-related performance requirements, and cost-sensitive, such as autonomous vehicles. Development of real-time systems is error-prone and highly dependent on the sophisticated domain expertise, making it a costly process. There is a trend of the existing software without the real-time notion being re-developed to realise real-time features, e.g., in the big data technology. This paper utilises the principles of model-driven engineering (MDE) and proposes the first methodology that automatically converts standard time-sharing Java applications to real-time Java applications. It opens up a new research direction on development automation of real-time programming languages and inspires many research questions that can be jointly investigated by the embedded systems, programming languages as well as MDE communities

    Towards Verification of UML Class Models using Formal Specification Methods: A Review

    Get PDF
    Abstract In today s world many elements of our lives are being affected by software and for that we are in greater need of high-quality software The Unified Modeling Language UML is considered the de facto standard for object-oriented software model development UML class diagram plays an important role in the design and specification of software systems A class diagram provides a static description of system component

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausführbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische Komplexität in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und führt zu insgesamt hohen Kosten bei der Produktion von Software. Zusätzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an Kundenwünschen, die der Entwicklung ein hohes Maß an Flexibilität in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen Komplexität bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfällige, manuelle Programmierung ähnlicher Komponenten überflüssig macht. Modellierungssprachen, die auf eine bestimmte Problemdomäne zugeschnitten sind, nennt man domänenspezifische Sprachen (DSLs). Domänenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von Variabilität in Software-Produkten an. Hierzu zählen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domänenspezifische Modellierung und eine spezielle Handhabung von Variabilität in Softwareproduktlinien sind von entscheidender Bedeutung für den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und müssen integriert werden, damit die Vorteile jedes einzelnen für die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingeführt, welches die modellgetriebene Softwareentwicklung mit mehreren domänenspezifischen Sprachen in variabilitätszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit für Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und Flexibilität zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt

    A Model-Based Approach for the Management of Electronic Invoices

    Get PDF
    The globalized market pushes companies to expand their business boundaries to a whole new level. In order to efficiently support this environment, business transactions must be executed over the Internet. However, there are several factors complicating this process, such as the current state of electronic invoices. Electronic invoice adoption is not widespread because of the current format fragmentation originated by national regulations. In this paper we present an approach based on Model-Driven Engineering techniques and abstractions for supporting the core functions of invoice management systems. We compare our solution with the traditional implementations and try to analyze the advantages MDE can bring to this specific domain

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Automatic code generation from UML diagrams: the state-of-the-art

    Get PDF
    The emergence of the Unified Modeling Language (UML) as the de-facto standard for modeling software systems has encouraged the development of automated software tools that facilitate automatic code generation. UML diagrams are used to diagrammatically model and specify the static structure as well as the dynamic behavior of object-oriented systems and the software tools then go ahead and automatically produce code from the given diagrams. In the last two decades substantial work has been done in this area of automatic code generation. This paper is aimed at identifying and classifying this work pertaining to automatic code generation from UML diagrams, restricting the search neither to a specific context nor to a particular programming language. A Systematic literature review (SLR) using the keywords “automatic code generation”, “MDE”, “code generation” and “UML” is used to identify 40 research papers published during the years 2000–2016 which are broadly classified into three groups: Approaches, Frameworks and Tools. For each paper, an analysis is made of the achievements and the gaps, the UML diagrams used the programming languages and the platform. This analysis helps to answer the main questions that the paper addresses including what techniques or implementation methods have been used for automatic code generation from UML Diagrams, what are the achievements and gaps in the field of automatic code generation from UML diagrams, which UML diagram is most used for automatic code generation from UML diagrams, which programming language source code is mostly automatically generated from the design models and which is the most used target platform? The answers provided in this paper will assist researchers, practitioners and developers to know the current state-of-the-art in automatic code generation from UML diagrams.Keywords: Automatic Code Generation (ACG); Unified Modeling Language (UML); Model Driven Engineering (MDE
    corecore