76 research outputs found

    Intrusion and Anomaly Detection Model Exchange for Mobile Ad-Hoc Networks

    Get PDF
    Mobile Ad-hoc NETworks (MANETs) pose unique security requirements and challenges due to their reliance on open, peer-to-peer models that often don't require authentication between nodes. Additionally, the limited processing power and battery life of the devices used in a MANET also prevent the adoption of heavy-duty cryptographic techniques. While traditional misuse-based Intrusion Detection Systems (IDSes) may work in a MANET, watching for packet dropouts or unknown outsiders is difficult as both occur frequently in both malicious and non-malicious traffic. Anomaly detection approaches hold out more promise, as they utilize learning techniques to adapt to the wireless environment and flag malicious data. The anomaly detection model can also create device behavior profiles, which peers can utilize to help determine its trustworthiness. However, computing the anomaly model itself is a time-consuming and processor-heavy task. To avoid this, we propose the use of model exchange as a device moves between different networks as a means to minimize computation and traffic utilization. Any node should be able to obtain peers' model(s) and evaluate it against its own model of "normal" behavior. We present this model, discuss scenarios in which it may be used, and provide preliminary results and a framework for future implementation

    A survey on mitigation methods to Black hole Attack on AODV routing protocol

    Get PDF
    AODV is a routing protocol that is designed for MANETs and it is using the on-demand routing method to establish the routes between nodes. The main benefit of this protocol is establishment of desired routes to destination when the source node requires and it keeps the routes as long as they are needed. The black hole attack is a common attack that can be accrued in AODV protocols. In this kind of attack, the attacker uses of one or more malicious nodes which advertise themselves in the network by setting a zero metric to all the destinations that causes all the nodes toward the data packets to these malicious nodes. The AODV is vulnerable against black hole attacks due to having network centric property, where all the nodes have to share their routing tables for each other. In this paper, we present the survey of existing mitigation methods that have been proposed to secure AODV. Keywords: Mobile Ad hoc Network (MANET); Black hole attack; Cooperative Black hole attack; Ad-hoc On-demand Distance Vector (AODV)

    A secure method to detect wormhole attack in mobile adhoc network

    Get PDF
    According to recent advances in wireless telecommunications, the performance and use of wireless technologies has increased extremely. In this study concerned on the Mobile Ad-hoc Network (MANET) is a collection of self-configuring mobile node without any infrastructure. There are different security flaws and attacks on the routing protocols in the MANET. One of the critical threats is the wormhole attacks, which have attracted a great deal of attention over the years. The wormhole attack can affect the performance of different routing protocols. During this attack, a malicious node captures packets from one location in the network, and “tunnels” them to another malicious node at a distant point, which replays them locally. This study presents a review of the most important solutions for counteracting wormhole attacks, as well as presents proposed method on DSR routing protocol for detecting them. The performance of the proposed method was examined through ns-2 simulations. Hence, the results show that proposed method can detect this serious attack in a Mobile Adhoc Network

    An analysis of secure MANET routing features to maintain confidentiality and integrity in IoT routing

    Get PDF
    The Internet of Things (IoT) is fast becoming a global phenomenon and many issues are arising such as standardization, deployment of IPv6, sensors’ energy requirements and security among others. However, without a secure network routing system IoT nodes will be exposed to malicious activities on the network, data compromises, privacy invasion and even acts of terrorism could be perpetrated via the teeming billions of IoT nodes. Various MANETs secure routing protocols have been proposed by researchers which could be utilized in the development of secure routing protocols for the Internet of things, thus the study of these secure MANET routing protocols will give a direction for the development and incorporation of secure routing in the Internet of Things. This paper surveys secure routing protocols in MANETs while proposing some secure MANET routing features for enshrining confidentiality and integrity in IoT routing. This paper also discusses research trends and future directions in the area of security of IoT networks

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this  an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    A Novel Method of Enhancing Security Solutions and Energy Efficiency of IoT Protocols

    Get PDF
    Mobile Ad-hoc Networks (MANET’s) are wireless networks that are capable of operating without any fixed infrastructure. MANET routing protocols must adhere to strict secrecy, integrity, availability and non-repudiation criteria. In MANETs, attacks are roughly categorised into two types: active and passive. An active attack attempts to modify or remove data being transferred across a network. On the other hand, passive attack does not modify or erase the data being sent over the network. The majority of routing protocols for MANETs were built with little regard for security and are therefore susceptible to a variety of assaults. Routing technologies such as AODV and dynamic source routing are quite common. Both however are susceptible to a variety of network layer attacks, including black holes, wormholes, rushing, byzantine, information disclosure. The mobility of the nodes and the open architecture in which the nodes are free to join or leave the network keep changing the topology of the network. The routing in such scenarios becomes a challenging task since it has to take into account the constraints of resources of mobile devices. In this an analysis of these protocols indicates that, though proactive routing protocols maintain a route to every destination and have low latency, they suffer from high routing overheads and inability to keep up with the dynamic topology in a large sized network. The reactive routing protocols in contrast have low routing overheads, better throughput and higher packet delivery ratio. AODVACO-PSO-DHKE Methodology boosts throughput by 10% while reducing routing overhead by 7%, latency by 8% and energy consumption by 5%. To avoid nodes always being on, a duty cycle procedure that's also paired with the hybrid method is used ACO-FDR PSO is applied to a 100-node network and NS-3 is used to measure various metrics such as throughput, latency, overhead, energy consumption and packet delivery ratio

    ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK PROTOCOLS

    Get PDF
    Several newly emerged wireless technologies (e.g., Internet-of-Things, Bluetooth, NFC)—extensively backed by the tech industry—are being widely adopted and have resulted in a proliferation of diverse smart appliances and gadgets (e.g., smart thermostat, wearables, smartphones), which has ensuingly shaped our modern digital life. These technologies include several communication protocols that usually have stringent requirements stated in their specifications. Failing to comply with such requirements can result in incorrect behaviors, interoperability issues, or even security vulnerabilities. Moreover, lack of robustness of the protocol implementation to malicious attacks—exploiting subtle vulnerabilities in the implementation—mounted by the compromised nodes in an adversarial environment can limit the practical utility of the implementation by impairing the performance of the protocol and can even have detrimental effects on the availability of the network. Even having a compliant and robust implementation alone may not suffice in many cases because these technologies often expose new attack surfaces as well as new propagation vectors, which can be exploited by unprecedented malware and can quickly lead to an epidemic

    A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions

    Full text link
    Thanks to the rapidly developing technology, unmanned aerial vehicles (UAVs) are able to complete a number of tasks in cooperation with each other without need for human intervention. In recent years, UAVs, which are widely utilized in military missions, have begun to be deployed in civilian applications and mostly for commercial purposes. With their growing numbers and range of applications, UAVs are becoming more and more popular; on the other hand, they are also the target of various threats which can exploit various vulnerabilities of UAV systems in order to cause destructive effects. It is therefore critical that security is ensured for UAVs and the networks that provide communication between UAVs. In this survey, we aimed to present a comprehensive detailed approach to security by classifying possible attacks against UAVs and flying ad hoc networks (FANETs). We classified the security threats into four major categories that make up the basic structure of UAVs; hardware attacks, software attacks, sensor attacks, and communication attacks. In addition, countermeasures against these attacks are presented in separate groups as prevention and detection. In particular, we focus on the security of FANETs, which face significant security challenges due to their characteristics and are also vulnerable to insider attacks. Therefore, this survey presents a review of the security fundamentals for FANETs, and also four different routing attacks against FANETs are simulated with realistic parameters and then analyzed. Finally, limitations and open issues are also discussed to direct future wor

    Rejuvenation and the Age of Information

    Get PDF
    International audienc
    • 

    corecore