3,133 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Adaptive architecture: Regulating human building interaction

    Get PDF
    In this paper we explore regulatory, technical and interactional implications of Adaptive Architecture, a novel trend emerging in the built environment. We provide a comprehensive description of the emergence and history of the term, with reference to the current state of the art and policy foundations supporting it e.g. smart city initiatives and building regulations. As Adaptive Architecture is underpinned by the Internet of Things (IoT), we are interested in how regulatory and surveillance issues posed by the IoT manifest in buildings too. To support our analysis, we utilise a prominent concept from architecture, Stuart Brand’s Shearing Layers model, which describes the different physical layers of a building and how they relate to temporal change. To ground our analysis, we use three cases of Adaptive Architecture, namely an IoT device (Nest Smart Cam IQ); an Adaptive Architecture research prototype, (ExoBuilding); and a commercial deployment (the Edge). In bringing together Shearing Layers, Adaptive Architecture and the challenges therein, we frame our analysis under 5 key themes. These are guided by emerging information privacy and security regulations. We explore the issues Adaptive Architecture needs to face for: A – ‘Physical & information security’; B – ‘Establishing responsibility’; C – ‘occupant rights over flows, collection, use & control of personal data’; D- ‘Visibility of Emotions and Bodies’; & E – ‘Surveillance of Everyday Routine Activities’. We conclude by summarising key challenges for Adaptive Architecture, regulation and the future of human building interaction

    Adaptive Architecture:Regulating human building interaction

    Get PDF
    In this paper, we explore the regulatory, technical and interactional implications of Adaptive Architecture (AA) and how it will recalibrate the nature of human-building interaction. We comprehensively unpack the emergence and history of this novel concept, reflecting on the current state of the art and policy foundations supporting it. As AA is underpinned by the Internet of Things (IoT), we consider how regulatory and surveillance issues posed by the IoT are manifesting in the built environment. In our analysis, we utilise a prominent architectural model, Stuart Brand’s Shearing Layers, to understand temporal change and informational flows across different physical layers of a building. We use three AA applications to situate our analysis, namely a smart IoT security camera; an AA research prototype; and an AA commercial deployment. Focusing on emerging information privacy and security regulations, particularly the EU General Data Protection Regulation 2016, we examine AA from 5 perspectives: physical & information security risks; challenges of establishing responsibility; enabling occupant rights over flows, collection, use & control of personal data; addressing increased visibility of emotions and bodies; understanding surveillance of everyday routine activities. We conclude with key challenges for AA regulation and the future of human–building interaction

    The 4th Industrial Revolution Powered by the Integration of AI, Blockchain, and 5G

    Get PDF
    The 21st century has introduced the 4th Industrial Revolution, which describes an industrial paradigm shift that alters social, economic, and political environments simultaneously. Innovative technologies such as blockchain, artificial intelligence, and advanced mobile networks power this digital revolution. These technologies provide a unique component that, when integrated, will establish a foundation to drive future innovation. In this paper, we summarize a 2019 Association for Information Systems Americas Conference on Information Systems (AMCIS) panel session where researchers who specialize in these technologies discussed new innovations and their integration. This topic has significant implications to business and academia both as these technologies will disrupt the social, economic, and political landscapes

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    • …
    corecore