15,280 research outputs found

    An optimized 128-bit cellular automata-based hash function for authentication of data at rest and in transit

    Get PDF
    The cryptographic hash functions are the most fundamental cryptographic concept. These functions are used as basic building blocks for digital signatures and message authentication. Boolean functions are the core of hash functions. These functions are expected to provide pseudo-randomness as well as input sensitivity. Cellular automata are a form of Boolean function that exhibits strong cryptography properties as well as chaotic behavior. This paper proposes a hash function, designed on the principle of cellular automata. The proposed algorithm is secure and meets the requirements for a successful hashing scheme. The hash function has strong statistical and cryptographic characteristics, according to the findings of the avalanche test and the National Institute of Standards and Technology (NIST) Statistical Test Suite. The modularity of different operations of this algorithm makes it suitable for a high-capacity processing environment to produce efficient performance

    Merkle-Damgård Construction Method and Alternatives: A Review

    Get PDF
    Cryptographic hash function is an important cryptographic tool in the field of information security. Design of most widely used hash functions such as MD5 and SHA-1 is based on the iterations of compression function by Merkle-Damgård construction method with constant initialization vector. Merkle-Damgård construction showed that the security of hash function depends on the security of the compression function. Several attacks on Merkle-Damgård construction based hash functions motivated researchers to propose different cryptographic constructions to enhance the security of hash functions against the differential and generic attacks. Cryptographic community had been looking for replacements for these weak hash functions and they have proposed new hash functions based on different variants of Merkle-Damgård construction. As a result of an open competition NIST announced Keccak as a SHA-3 standard. This paper provides a review of cryptographic hash function, its security requirements and different design methods of compression function

    Research of collision properties of the modified UMAC algorithm on crypto-code constructions

    Get PDF
    The transfer of information by telecommunication channels is accompanied by message hashing to control the integrity of the data and confirm the authenticity of the data. When using a reliable hash function, it is computationally difficult to create a fake message with a pre-existing hash code, however, due to the weaknesses of specific hashing algorithms, this threat can be feasible. To increase the level of cryptographic strength of transmitted messages over telecommunication channels, there are ways to create hash codes, which, according to practical research, are imperfect in terms of the speed of their formation and the degree of cryptographic strength. The collisional properties of hashing functions formed using the modified UMAC algorithm using the methodology for assessing the universality and strict universality of hash codes are investigated. Based on the results of the research, an assessment of the impact of the proposed modifications at the last stage of the generation of authentication codes on the provision of universal hashing properties was presented. The analysis of the advantages and disadvantages that accompany the formation of the hash code by the previously known methods is carried out. The scheme of cascading generation of data integrity and authenticity control codes using the UMAC algorithm on crypto-code constructions has been improved. Schemes of algorithms for checking hash codes were developed to meet the requirements of universality and strict universality. The calculation and analysis of collision search in the set of generated hash codes was carried out according to the requirements of a universal and strictly universal class for creating hash code

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function

    Denial-of-Service Resistance in Key Establishment

    Get PDF
    Denial of Service (DoS) attacks are an increasing problem for network connected systems. Key establishment protocols are applications that are particularly vulnerable to DoS attack as they are typically required to perform computationally expensive cryptographic operations in order to authenticate the protocol initiator and to generate the cryptographic keying material that will subsequently be used to secure the communications between initiator and responder. The goal of DoS resistance in key establishment protocols is to ensure that attackers cannot prevent a legitimate initiator and responder deriving cryptographic keys without expending resources beyond a responder-determined threshold. In this work we review the strategies and techniques used to improve resistance to DoS attacks. Three key establishment protocols implementing DoS resistance techniques are critically reviewed and the impact of misapplication of the techniques on DoS resistance is discussed. Recommendations on effectively applying resistance techniques to key establishment protocols are made

    An Analysis and Enumeration of the Blockchain and Future Implications

    Get PDF
    The blockchain is a relatively new technology that has grown in interest and potential research since its inception. Blockchain technology is dominated by cryptocurrency in terms of usage. Research conducted in the past few years, however, reveals blockchain has the potential to revolutionize several different industries. The blockchain consists of three major technologies: a peer-to-peer network, a distributed database, and asymmetrically encrypted transactions. The peer-to-peer network enables a decentralized, consensus-based network structure where various nodes contribute to the overall network performance. A distributed database adds additional security and immutability to the network. The process of cryptographically securing individual transactions forms a core service of the blockchain and enables semi-anonymous user network presence

    Verifiable Random Functions (VRFs)

    Full text link
    A Verifiable Random Function (VRF) is the public-key version of a keyed cryptographic hash. Only the holder of the private key can compute the hash, but anyone with public key can verify the correctness of the hash. VRFs are useful for preventing enumeration of hash-based data structures. This document specifies several VRF constructions that are secure in the cryptographic random oracle model. One VRF uses RSA and the other VRF uses Eliptic Curves (EC).https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/First author draf

    CURRENT APPROACHES IN MODERN CRYPTOLOGY

    Get PDF
    This work proposes a brief analysis of the different types of current approaches to modern cryptology in present days. Due to increased development of communications and IT technologies, the field of cryptography practical approaches exceeded your government / military / intelligence / bank, eventually passing the civil environment and / or private. This process has soared in recent years and the requirements of market economy have forced a trend towards standardization of the theory and practice in cryptology. From there follows a rapid dissemination, sometimes without authorized assessment any official post by a wide range of users, including the private sector. This purposes as stated above, we try an analysis of current patterns of cryptology approach to find action ways for national authorized entities to follow in the near future to synchronize efforts made in the same field of other countries and / or alliances or international organizations. Finally, it should be noted that we considered only the approach of the different types of entities of the cryptologic phenomenon, without regard to side - the scientific approach, which may be subject to other works.cryptology
    corecore