71,845 research outputs found

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    Dynamic Routing Framework for Wireless Sensor Networks

    Get PDF
    Numerous routing protocols have been proposed for wireless sensor networks. Each such protocol carries with it a set of assumptions about the trafï¬c type that it caters to, and hence has limited interoperability. Also, most protocols are validated over workloads which only form a fraction of an actual deployment’s requirement. Most real world and commercial deployments, however, would generate multiple trafï¬c types simultaneously throughout the lifetime of the network. For example, most deployments would want all of the following to happen concurrently from the network: periodic reliable sense and disseminate, real time streams, patched updates, network reprogramming, query-response dialogs, mission critical alerts and so on. Naturally, no one routing protocol can completely cater to all of a deployments requirements. This chapter presents a routing framework that captures the communication intent of an application by using just three bits. The traditional routing layer is replaced with a collection of routing components that can cater to various communication patterns. The framework dynamically switches routing component for every packet in question. Data structure requirements of component protocols are regularized, and core protocol features are distilled to build a highly composable collection of routing modules. This creates a framework for developing, testing, integrating, and validating protocols that are highly portable from one deployment to another. Communication patterns can be easily described to lower layer protocols using this framework. One such real world application scenario is also investigated: that of predictive maintenance (PdM). The requirements of a large scale PdM are used to generate a fairly complete and realistic trafï¬c workload to drive an evaluation of such a framework

    Deployment Experience with Low Power Lossy Wireless Sensor Networks

    Get PDF
    Protocols that are to be employed in the context of the Internet of Things (IoT) have to meet a wide variety of application-specific requirements. In this report, we reflect on recent experiences, gained from several real-world deployments in which we have participated, which use low power, embedded networking devices. We discuss the lessons learned from these deployments, with an emphasis on questions affecting the IP layer and, in particular, on the routing protocols for these networks. We point out open issues and possible directions of future work for such routing protocols

    QoS-Based and Secure Multipath Routing in Wireless Sensor Networks

    Get PDF
    With the growing demand for quality of service (QoS) aware routing protocols in wireless networks, QoS-based routing has emerged as an interesting research topic. A QoS guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. Furthermore, due to the increased use of sensor nodes in a variety of application fields, WSNs need to handle heterogeneous traffic with diverse priorities to achieve the required QoS. In this thesis, we investigate the problem of providing multi-QoS in routing protocols for WSNs. In particular, we investigate several aspects related to the application requirements and the network states and resources. We present multi-objective QoS aware routing protocol for WSNs that uses the geographic routing mechanism combined with the QoS requirements to meet diverse application requirements by considering the changing conditions of the network. The protocol formulates the application requirements with the links available resources and conditions to design heuristic neighbor discovery algorithms. Also, with the unlimited resource at the sink node, the process of selecting the routing path/paths is assigned to the sink. Paths selection algorithms are designed with various goals in order to extend network lifetime, enhance the reliability of data transmission, decrease end-to-end delay, achieve load balancing and provide fault tolerance. We also develop a cross-layer routing protocol that combines routing at network layer and the time scheduling at the MAC layer with respect to delay and reliability in an energy efficient way. A node-disjoint multipath routing is used and a QoS-aware priority scheduling considering MAC layer is proposed to ensure that real time and non-real time traffic achieve their desired QoS while alleviating congestion in the network. Additionally, we propose new mechanism for secure and reliable data transmission in multipath routing for WSNs. Different levels of security requirements are defined and depending on these requirements, a selective encryption scheme is introduced to encrypt selected number of coded fragments in order to enhance security and thereby reduce the time required for encryption. Node-disjoint multipath routing combined with source coding is used in order to enhance both security and reliability of data transmission. Also, we develop an allocation strategy that allocates fragments on paths to enhance both the security and probability of successful data delivery. Analysis and extensive simulation are conducted to study the performance of all the above proposed protocols

    Stable Wireless Network Control Under Service Constraints

    Full text link
    We consider the design of wireless queueing network control policies with particular focus on combining stability with additional application-dependent requirements. Thereby, we consequently pursue a cost function based approach that provides the flexibility to incorporate constraints and requirements of particular services or applications. As typical examples of such requirements, we consider the reduction of buffer underflows in case of streaming traffic, and energy efficiency in networks of battery powered nodes. Compared to the classical throughput optimal control problem, such requirements significantly complicate the control problem. We provide easily verifyable theoretical conditions for stability, and, additionally, compare various candidate cost functions applied to wireless networks with streaming media traffic. Moreover, we demonstrate how the framework can be applied to the problem of energy efficient routing, and we demonstrate the aplication of our framework in cross-layer control problems for wireless multihop networks, using an advanced power control scheme for interference mitigation, based on successive convex approximation. In all scenarios, the performance of our control framework is evaluated using extensive numerical simulations.Comment: Accepted for publication in IEEE Transactions on Control of Network Systems. arXiv admin note: text overlap with arXiv:1208.297

    Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication

    Get PDF
    The Internet of Vehicles (IoVs) is an emerging paradigm aiming to introduce a plethora of innovative applications and services that impose a certain quality of service (QoS) requirements. The IoV mainly relies on vehicular ad-hoc networks (VANETs) for autonomous inter-vehicle communication and road-traffic safety management. With the ever-increasing demand to design new and emerging applications for VANETs, one challenge that continues to stand out is the provision of acceptable QoS requirements to particular user applications. Most existing solutions to this challenge rely on a single layer of the protocol stack. This paper presents a cross-layer decision-based routing protocol that necessitates choosing the best multi-hop path for packet delivery to meet acceptable QoS requirements. The proposed protocol acquires the information about the channel rate from the physical layer and incorporates this information in decision making, while directing traffic at the network layer level. Key performance metrics for the system design are analyzed using extensive experimental simulation scenarios. In addition, three data rate variant solutions are proposed to cater for various application-specific requirements in highways and urban environments. © 2013 IEEE

    Performance analysis of variable Smart Grid traffic over ad hoc Wireless Mesh Networks

    Get PDF
    Recent advances in ad hoc Wireless Mesh Networks (WMN) has posited it as a strong candidate in Smart Grid's Neighbourhood Area Network (NAN) for Advanced Metering Infrastructure (AMI). However, its abysmal capacity and poor multi-hoping performance in harsh dynamic environment will require an improvement to its protocol stacks in order for it to effectively support the variable requirements of application traffic in Smart Grid. This paper presents a classification of Smart Grid traffics and examines the performance of HWMP (which is the default routing protocol of the IEEE 802.11s standard) with the Optimised Link State Routing (OLSR) protocol in a NAN based ad hoc WMN. Results from simulations in ns-3 show that HWMP does not outperform OLSR. This indicates that cross layer modifications can be developed in OLSR protocol to address the routing challenges in a NAN based ad hoc WMN

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    SIMPLIFIED AI POWERED DIALING PLAN HANDLER IN UNIFIED COMMUNICATIONS MANAGER

    Get PDF
    In a unified communications (UC) environment, the Call Manager (UCM) application contains a call control layer in which a digit analysis module supports the transformation of called and calling numbers and the determination of a routing decision. Such activities are typically complex and computationally intensive. To address such challenges techniques are presented herein that leverage artificial intelligence (AI) models (such as Artificial Neural Network (ANN) models) that are, among other things, customized and trained (based on, for example, customer requirements) in a cloud to, among other things, augment the number transformation and routing decision processes. Under aspects of the techniques presented herein a dialing plan may be offloaded from a UCM configuration workflow and moved to a collaboration cloud for centralized dialing plan management. Such an approach will reduce the complexity of the call control layer which will, in turn, make the UCM faster and computationally cheaper

    Multilevel adaptive security system

    Get PDF
    Recent trends show increased demand for content-rich media such as images, videos and text in ad-hoc communication. Since such content often tends to be private, sensitive, or paid for, there exists a requirement for securing such information over resource constrained ad hoc networks. In this work, traditional data security mechanisms, existing ad hoc secure routing protocols and multilevel security are first reviewed. Then a new system, called the Multilevel Adaptive Security System, which incorporates the multilevel security concept at both the application layer and the network layer, is proposed to provide adaptive security services for data and routing processes. MLASS is composed of two subsystems: Content-Based Multi-level Data Security (CB-MLDS) for content-rich data protection and Multi-Level On-demand Secure Mobile Ad hoc Routing (MOSAR) for secure route selection. The structure of each sub-system is explained in detail; experiments for each sub-system were conducted and the performance was analyzed. It is shown that MLASS is a practical security solution that is flexible enough to adapt to a range of security requirements and applies appropriate level of security services to data and its distribution over ad hoc networks. MLASS provides a balance between security, performance and resource
    • …
    corecore