161,983 research outputs found

    Synthesis of Specifications and Refinement Maps for Real-Time Object Code Verification

    Get PDF
    Formal verification methods have been shown to be very effective in finding corner-case bugs and ensuring the safety of embedded software systems. The use of formal verification requires a specification, which is typically a high-level mathematical model that defines the correct behavior of the system to be verified. However, embedded software requirements are typically described in natural language. Transforming these requirements into formal specifications is currently a big gap. While there is some work in this area, we proposed solutions to address this gap in the context of refinement-based verification, a class of formal methods that have shown to be effective for embedded object code verification. The proposed approach also addresses both functional and timing requirements and has been demonstrated in the context of safety requirements for software control of infusion pumps. The next step in the verification process is to develop the refinement map, which is a mapping function that can relate an implementation state (in this context, the state of the object code program to be verified) with the specification state. Actually, constructing refinement maps often requires deep understanding and intuitions about the specification and implementation, it is shown very difficult to construct refinement maps manually. To go over this obstacle, the construction of refinement maps should be automated. As a first step toward the automation process, we manually developed refinement maps for various safety properties concerning the software control operation of infusion pumps. In addition, we identified possible generic templates for the construction of refinement maps. Recently, synthesizing procedures of refinement maps for functional and timing specifications are proposed. The proposed work develops a process that significantly increases the automation in the generation of these refinement maps. The refinement maps can then be used for refinement-based verification. This automation procedure has been successfully applied on the transformed safety requirements in the first part of our work. This approach is based on the identified generic refinement map templates which can be increased in the future as the application required

    3D-SoftChip: A novel 3D vertically integrated adaptive computing system [thesis]

    Get PDF
    At present, as we enter the nano and giga-scaled integrated-circuit era, there are many system design challenges which must be overcome to resolve problems in current systems. The incredibly increased nonrecurring engineering (NRE) cost, abruptly shortened Time-to- Market (ITA) period and ever widening design productive gaps are good examples illustrating the problems in current systems. To cope with these problems, the concept of an Adaptive Computing System is becoming a critical technology for next generation computing systems. The other big problem is an explosion in the interconnection wire requirements in standard planar technology resulting from the very high data-bandwidth requirements demanded for real-time communications and multimedia signal processing. The concept of 3D-vertical integration of 2D planar chips becomes an attractive solution to combat the ever increasing interconnect wire requirements. As a result, this research proposes the concept of a novel 3D integrated adaptive computing system, which we term 3D-ACSoC. The architecture and advanced system design methodology of the proposed 3D-SoftChip as a forthcoming giga-scaled integrated circuit computing system has been introduced, along with high-level system modeling and functional verification in the early design stage using SystemC

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system
    corecore