27 research outputs found

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods

    Tomographic Reconstruction of Carboniferous Arthropods

    No full text
    Carboniferous fossils are often found as three-dimensional voids within siderite (FeCO3) nodules. Traditional techniques of study – splitting the host concretion and inspecting the surfaces revealed – do not allow the investigation of morphology within the part / counterpart, and prevent complete data recovery. X-ray micro-tomography (XMT) and 'virtual palaeontology' can overcome such limitations. This thesis documents the application of XMT to a number of Carboniferous arthropod groups. In the trigonotarbids (Arachnida: Trigonotarbida) the technique has revealed novel features such as coxal endites and tarsal claws, and allowed a taxonomic revision of the family Anthracomartidae. The harvestmen (Arachnida: Opiliones) have a sparse fossil record, resulting from their poorly sclerotized exoskeleton and terrestriality. Two new species have been reconstructed, greatly expanding morphological data from the early history of the group, and the cladistic assignment of both to extant clades supports molecular estimates of early (Palaeozoic) cladogenesis among the Opiliones. XMT of Compsoscorpius buthiformis (Arachnida: Scorpiones) has allowed a taxonomic revision of numerous Carboniferous scorpions, and provided insight regarding the species' mode of life. XMT analysis of stem-dictyopteran Archimylacris eggintoni (Insecta: Neoptera) – now one of the morphologically best known 'roachoid' fossils – has provided evidence that it was a fast runner, an adept climber and a detritivore. Two new species of insect nymph have also been reconstructed: a heavily spined example is quite unlike any previously described taxa, whereas the other has possible roachoid affinities. The investigation of the enigmatic arthropod Camptophyllia has failed to reveal a sternal surface or appendages, but has nevertheless provided new details of the morphology of this unusual taxon. XMT is a powerful new technique for studying siderite-hosted fossils: it reveals their morphology in great detail, and can inform debates regarding the mode of life, phylogeny, and taxonomy of a wide range of Carboniferous arthropods

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Artificial Intelligence for Data Analysis and Signal Processing

    Get PDF
    Artificial intelligence, or AI, currently encompasses a huge variety of fields, from areas such as logical reasoning and perception, to specific tasks such as game playing, language processing, theorem proving, and diagnosing diseases. It is clear that systems with human-level intelligence (or even better) would have a huge impact on our everyday lives and on the future course of evolution, as it is already happening in many ways. In this research AI techniques have been introduced and applied in several clinical and real world scenarios, with particular focus on deep learning methods. A human gait identification system based on the analysis of inertial signals has been developed, leading to misclassification rates smaller than 0.15%. Advanced deep learning architectures have been also investigated to tackle the problem of atrial fibrillation detection from short length and noisy electrocardiographic signals. The results show a clear improvement provided by representation learning over a knowledge-based approach. Another important clinical challenge, both for the patient and on-board automatic alarm systems, is to detect with reasonable advance the patterns leading to risky situations, allowing the patient to take therapeutic decisions on the basis of future instead of current information. This problem has been specifically addressed for the prediction of critical hypo/hyperglycemic episodes from continuous glucose monitoring devices, carrying out a comparative analysis among the most successful methods for glucose event prediction. This dissertation also shows evidence of the benefits of learning algorithms for vehicular traffic anomaly detection, through the use of a statistical Bayesian framework, and for the optimization of video streaming user experience, implementing an intelligent adaptation engine for video streaming clients. The proposed solution explores the promising field of deep learning methods integrated with reinforcement learning schema, showing its benefits against other state of the art approaches. The great knowledge transfer capability of artificial intelligence methods and the benefits of representation learning systems stand out from this research, representing the common thread among all the presented research fields

    Linking Spatial Video and GIS

    Get PDF
    Spatial Video is any form of geographically referenced videographic data. The forms in which it is acquired, stored and used vary enormously; as does the standard of accuracy in the spatial data and the quality of the video footage. This research deals with a specific form of Spatial Video where these data have been captured from a moving road-network survey vehicle. The spatial data are GPS sentences while the video orientation is approximately orthogonal and coincident with the direction of travel. GIS that use these data are usually bespoke standalone systems or third party extensions to existing platforms. They specialise in using the video as a visual enhancement with limited spatial functionality and interoperability. While enormous amounts of these data exist, they do not have a generalised, cross-platform spatial data structure that is suitable for use within a GIS. The objectives of this research have been to define, develop and implement a novel Spatial Video data structure and demonstrate how this can achieve a spatial approach to the study of video. This data structure is called a Viewpoint and represents the capture location and geographical extent of each video frame. It is generalised to represent any form or format of Spatial Video. It is shown how a Viewpoint improves on existing data structure methodologies and how it can be theoretically defined in 3D space. A 2D implementation is then developed where Viewpoints are constructed from the spatial and camera parameters of each survey in the study area. A number of problems are defined and solutions provided towards the implementation of a post-processing system to calculate, index and store each video frame Viewpoint in a centralised spatial database. From this spatial database a number of geospatial analysis approaches are demonstrated that represent novel ways of using and studying Spatial Video based on the Viewpoint data structure. Also, a unique application is developed where the Viewpoints are used as a spatial control to dynamically access and play video in a location aware system. While video has been to date largely ignored as a GIS spatial data source; it is shown through this novel Viewpoint implementation and the geospatial analysis demonstrations that this need not be the case anymore

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Axmedis 2005

    Get PDF
    The AXMEDIS conference aims to promote discussions and interactions among researchers, practitioners, developers and users of tools, technology transfer experts, and project managers, to bring together a variety of participants. The conference focuses on the challenges in the cross-media domain (which include production, protection, management, representation, formats, aggregation, workflow, distribution, business and transaction models), and the integration of content management systems and distribution chains, with particular emphasis on cost reduction and effective solutions for complex cross-domain problems

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement
    corecore