10,707 research outputs found

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction

    Designing and Implementing Embodied Agents: Learning from Experience

    Get PDF
    In this paper, we provide an overview of part of our experience in designing and implementing some of the embodied agents and talking faces that we have used for our research into human computer interaction. We focus on the techniques that were used and evaluate this with respect to the purpose that the agents and faces were to serve and the costs involved in producing and maintaining the software. We discuss the function of this research and development in relation to the educational programme of our graduate students

    Construals as a complement to intelligent tutoring systems in medical education

    Get PDF
    This is a preliminary version of a report prepared by Meurig and Will Beynon in conjunction with a poster paper "Mediating Intelligence through Observation, Dependency and Agency in Making Construals of Malaria" at the 11th International Conference on Intelligent Tutoring Systems (ITS 2012) and a paper "Construals to Support Exploratory and Collaborative Learning in Medicine" at the associated workshop on Intelligent Support for Exploratory Environments (ISEE 2012). A final version of the report will be published at a later stage after feedback from presentations at these events has been taken into account, and the experimental versions of the JS-EDEN interpreter used in making construals have been developed to a more mature and stable form

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system

    Future challenges in intelligent tutoring systems: a framework

    Get PDF
    Intelligent Tutoring Systems (ITS) provide the benefits of one-on-one instruction in an automatic way and cost effectively, keeping in mind their multidisciplinary nature. The challenge remains on transporting to com-puters the expertise, skills and mode of action of the human tutor, overcoming space, time, socio-economical and environmental restrictions. ITS appear as a form of deployment of this issue and have been object of an increasing research. This paper aims to establish some characteristics, properties and functions that an ITS should provide, and the possible contributions that the different fields of research can make, proposing a multi-domain and multidisciplinary framework to address the research in this field. The framework incorpo-rates a knowledge base where data and knowledge related to the problem are maintained and a model base re-lated to student, teaching and environmental issues together with pedagogical perspectives

    Web-based medical teaching using a multi-agent system

    Get PDF
    Web-based teaching via Intelligent Tutoring Systems (ITSs) is considered as one of the most successful enterprises in artificial intelligence. Indeed, there is a long list of ITSs that have been tested on humans and have proven to facilitate learning, among which we may find the well-tested and known tutors of algebra, geometry, and computer languages. These ITSs use a variety of computational paradigms, as production systems, Bayesian networks, schema-templates, theorem proving, and explanatory reasoning. The next generation of ITSs are expected to go one step further by adopting not only more intelligent interfaces but will focus on integration. This article will describe some particularities of a tutoring system that we are developing to simulate conversational dialogue in the area of Medicine, that enables the integration of highly heterogeneous sources of information into a coherent knowledge base, either from the tutor’s point of view or the development of the discipline in itself, i.e. the system’s content is created automatically by the physicians as their daily work goes on. This will encourage students to articulate lengthier answers that exhibit deep reasoning, rather than to deliver straight tips of shallow knowledge. The goal is to take advantage of the normal functioning of the health care units to build on the fly a knowledge base of cases and data for teaching and research purposes
    corecore