12 research outputs found

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A novel approach for identification of sensor devices through acoustic PUF

    Get PDF
    The supply chain traceability of components from a production facility to deployment and maintenance depends upon its irrefutable identity. There are two well-known methods for identification which includes an identity code stored in the memory and embedding a custom identification hardware. While storing the identity code is susceptible to malicious and unintentional attacks, the approach of embedding a custom identification hardware is infeasible for sensor nodes assembled with Commercially-Off-the-Shelf (COTS) devices. We propose a novel identifier - Acoustic PUF based on the innate properties of the sensor node. Acoustic PUF combines the uniqueness component and the position component of the sensor device signature. The uniqueness component is derived by exploiting the manufacturing tolerances, thus making the signature unclonable. The position component is derived through acoustic fingerprinting, thus giving a sticky identity to the sensor device. We evaluate Acoustic PUF for Uniqueness, Repeatability and Position identity with a deployment spanning several weeks. Through our experimental evaluation and further numerical analysis, we prove that Acoustic PUF can uniquely identify thousands of devices with 99% accuracy while simultaneously detecting the change in position

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Dynamic reconfiguration frameworks for high-performance reliable real-time reconfigurable computing

    Get PDF
    The sheer hardware-based computational performance and programming flexibility offered by reconfigurable hardware like Field-Programmable Gate Arrays (FPGAs) make them attractive for computing in applications that require high performance, availability, reliability, real-time processing, and high efficiency. Fueled by fabrication process scaling, modern reconfigurable devices come with ever greater quantities of on-chip resources, allowing a more complex variety of applications to be developed. Thus, the trend is that technology giants like Microsoft, Amazon, and Baidu now embrace reconfigurable computing devices likes FPGAs to meet their critical computing needs. In addition, the capability to autonomously reprogramme these devices in the field is being exploited for reliability in application domains like aerospace, defence, military, and nuclear power stations. In such applications, real-time computing is important and is often a necessity for reliability. As such, applications and algorithms resident on these devices must be implemented with sufficient considerations for real-time processing and reliability. Often, to manage a reconfigurable hardware device as a computing platform for a multiplicity of homogenous and heterogeneous tasks, reconfigurable operating systems (ROSes) have been proposed to give a software look to hardware-based computation. The key requirements of a ROS include partitioning, task scheduling and allocation, task configuration or loading, and inter-task communication and synchronization. Existing ROSes have met these requirements to varied extents. However, they are limited in reliability, especially regarding the flexibility of placing the hardware circuits of tasks on device’s chip area, the problem arising more from the partitioning approaches used. Indeed, this problem is deeply rooted in the static nature of the on-chip inter-communication among tasks, hampering the flexibility of runtime task relocation for reliability. This thesis proposes the enabling frameworks for reliable, available, real-time, efficient, secure, and high-performance reconfigurable computing by providing techniques and mechanisms for reliable runtime reconfiguration, and dynamic inter-circuit communication and synchronization for circuits on reconfigurable hardware. This work provides task configuration infrastructures for reliable reconfigurable computing. Key features, especially reliability-enabling functionalities, which have been given little or no attention in state-of-the-art are implemented. These features include internal register read and write for device diagnosis; configuration operation abort mechanism, and tightly integrated selective-area scanning, which aims to optimize access to the device’s reconfiguration port for both task loading and error mitigation. In addition, this thesis proposes a novel reliability-aware inter-task communication framework that exploits the availability of dedicated clocking infrastructures in a typical FPGA to provide inter-task communication and synchronization. The clock buffers and networks of an FPGA use dedicated routing resources, which are distinct from the general routing resources. As such, deploying these dedicated resources for communication sidesteps the restriction of static routes and allows a better relocation of circuits for reliability purposes. For evaluation, a case study that uses a NASA/JPL spectrometer data processing application is employed to demonstrate the improved reliability brought about by the implemented configuration controller and the reliability-aware dynamic communication infrastructure. It is observed that up to 74% time saving can be achieved for selective-area error mitigation when compared to state-of-the-art vendor implementations. Moreover, an improvement in overall system reliability is observed when the proposed dynamic communication scheme is deployed in the data processing application. Finally, one area of reconfigurable computing that has received insufficient attention is security. Meanwhile, considering the nature of applications which now turn to reconfigurable computing for accelerating compute-intensive processes, a high premium is now placed on security, not only of the device but also of the applications, from loading to runtime execution. To address security concerns, a novel secure and efficient task configuration technique for task relocation is also investigated, providing configuration time savings of up to 32% or 83%, depending on the device; and resource usage savings in excess of 90% compared to state-of-the-art

    Perpetual Sensing: Experiences with Energy-Harvesting Sensor Systems

    Full text link
    Industry forecasts project the number of connected devices will outpace the global population by orders of magnitude in the next decade or two. These projections are application driven: smart cities, implantable health monitors, responsive buildings, autonomous robots, driverless cars, and instrumented infrastructure are all expected to be drivers for the growth of networked devices. Achieving this immense scale---potentially trillions of smart and connected sensors and computers, popularly called the "Internet of Things"---raises a host of challenges including operating system design, networking protocols, and orchestration methodologies. However, another critical issue may be the most fundamental: If embedded computers outnumber people by a factor of a thousand, how are we going to keep all of these devices powered? In this dissertation, we show that energy-harvesting operation, by which devices scavenge energy from their surroundings to power themselves after they are deployed, is a viable answer to this question. In particular, we examine a range of energy-harvesting sensor node designs for a specific application: smart buildings. In this application setting, the devices must be small and sleek to be unobtrusively and widely deployed, yet shrinking the devices also reduces their energy budgets as energy storage often dominates their volume. Additionally, energy-harvesting introduces new challenges for these devices due to the intermittent access to power that stems from relying on unpredictable ambient energy sources. To address these challenges, we present several techniques for realizing effective sensors despite the size and energy constraints. First is Monjolo, an energy metering system that exploits rather than attempts to mask the variability in energy-harvesting by using the energy harvester itself as the sensor. Building on Monjolo, we show how simple time synchronization and an application specific sensor can enable accurate, building-scale submetering while remaining energy-harvesting. We also show how energy-harvesting can be the foundation for highly deployable power metering, as well as indoor monitoring and event detection. With these sensors as a guide, we present an architecture for energy-harvesting systems that provides layered abstractions and enables modular component reuse. We also couple these sensors with a generic and reusable gateway platform and an application-layer cloud service to form an easy-to-deploy building sensing toolkit, and demonstrate its effectiveness by performing and analyzing several modest-scale deployments.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138686/1/bradjc_1.pd

    Muon (g-2) Technical Design Report

    Get PDF
    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969

    Idaho National Laboratory LDRD Annual Report FY 2012

    Full text link
    corecore