24,598 research outputs found

    Technical alignment

    Get PDF
    This essay discusses the importance of the areas of infrastructure and testing to help digital preservation services demonstrate reliability, transparency, and accountability. It encourages practitioners to build a strong culture in which transparency and collaborations between technical frameworks are valued highly. It also argues for devising and applying agreed-upon metrics that will enable the systematic analysis of preservation infrastructure. The essay begins by defining technical infrastructure and testing in the digital preservation context, provides case studies that exemplify both progress and challenges for technical alignment in both areas, and concludes with suggestions for achieving greater degrees of technical alignment going forward

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Full text link
    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model or application specific and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions, that enables full accounts of provenance, sharing and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable, quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under revie

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    Benchmarking news recommendations: the CLEF NewsREEL use case

    Get PDF
    The CLEF NewsREEL challenge is a campaign-style evaluation lab allowing participants to evaluate and optimize news recommender algorithms. The goal is to create an algorithm that is able to generate news items that users would click, respecting a strict time constraint. The lab challenges participants to compete in either a "living lab" (Task 1) or perform an evaluation that replays recorded streams (Task 2). In this report, we discuss the objectives and challenges of the NewsREEL lab, summarize last year's campaign and outline the main research challenges that can be addressed by participating in NewsREEL 2016

    QuNex—An integrative platform for reproducible neuroimaging analytics

    Get PDF
    Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability. Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a “turnkey” command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features. Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform. Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Behavioral Recovery and Early Decision Making in Patients with Prolonged Disturbance in Consciousness after Traumatic Brain Injury

    Get PDF
    The extent of behavioral recovery that occurs in patients with traumatic disorders of consciousness (DoC) following discharge from the acute care setting has been under-studied and increases the risk of overly pessimistic outcome prediction. The aim of this observational cohort study was to systematically track behavioral and functional recovery in patients with prolonged traumatic DoC following discharge from the acute care setting. Standardized behavioral data were acquired from 95 patients in a minimally conscious (MCS) or vegetative state (VS) recruited from 11 clinic sites and randomly assigned to the placebo arm of a previously completed prospective clinical trial. Patients were followed for 6 weeks by blinded observers to determine frequency of recovery of six target behaviors associated with functional status. The Coma Recovery Scale-Revised and Disability Rating Scale were used to track reemergence of target behaviors and assess degree of functional disability, respectively. Twenty percent (95% confidence interval [CI]: 13-30%) of participants (mean age 37.2; median 47 days post-injury; 69 men) recovered all six target behaviors within the 6 week observation period. The odds of recovering a specific target behavior were 3.2 (95% CI: 1.2-8.1) to 7.8 (95% CI: 2.7-23.0) times higher for patients in MCS than for those in VS. Patients with preserved language function ("MCS+") recovered the most behaviors (p ≤ 0.002) and had the least disability (p ≤ 0.002) at follow-up. These findings suggest that recovery of high-level behaviors underpinning functional independence is common in patients with prolonged traumatic DoC. Clinicians involved in early prognostic counseling should recognize that failure to emerge from traumatic DoC before 28 days does not necessarily portend unfavorable outcome
    corecore