77 research outputs found

    Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and result

    Get PDF
    Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 ​mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies

    A Unified Single-stage Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-weighted MRI

    Full text link
    Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relied on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences

    Fighting the scanner effect in brain MRI segmentation with a progressive level-of-detail network trained on multi-site data

    Full text link
    Many clinical and research studies of the human brain require an accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure very high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). The performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variabilities in intensity distributions induced by different MR scanner models, acquisition parameters, and unique artefacts. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD) able to segment brain data from any site. Coarser network levels are responsible to learn a robust anatomical prior useful for identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedented rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability opens the way for large scale application across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available at the project website

    Fighting the scanner effect in brain MRI segmentation with a progressive level-of-detail network trained on multi-site data

    Get PDF
    Many clinical and research studies of the human brain require accurate structural MRI segmentation. While traditional atlas-based methods can be applied to volumes from any acquisition site, recent deep learning algorithms ensure high accuracy only when tested on data from the same sites exploited in training (i.e., internal data). Performance degradation experienced on external data (i.e., unseen volumes from unseen sites) is due to the inter-site variability in intensity distributions, and to unique artefacts caused by different MR scanner models and acquisition parameters. To mitigate this site-dependency, often referred to as the scanner effect, we propose LOD-Brain, a 3D convolutional neural network with progressive levels-of-detail (LOD), able to segment brain data from any site. Coarser network levels are responsible for learning a robust anatomical prior helpful in identifying brain structures and their locations, while finer levels refine the model to handle site-specific intensity distributions and anatomical variations. We ensure robustness across sites by training the model on an unprecedentedly rich dataset aggregating data from open repositories: almost 27,000 T1w volumes from around 160 acquisition sites, at 1.5 - 3T, from a population spanning from 8 to 90 years old. Extensive tests demonstrate that LOD-Brain produces state-of-the-art results, with no significant difference in performance between internal and external sites, and robust to challenging anatomical variations. Its portability paves the way for large-scale applications across different healthcare institutions, patient populations, and imaging technology manufacturers. Code, model, and demo are available on the project website

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account

    The clinical impact of multidetector SPET technology

    Get PDF
    Introduction: Single photon emission tomography (SPET) is an established technique in Nuclear Medicine. Recent advances in SPET technology have now permitted the development of multidetector gamma cameras. This thesis evaluates some of these new gamma cameras and their impact on clinical practice. Aim: (a) To assess four new multidetector SPET gamma cameras (IGE Neurocam, Toshiba GCA-9300A, IGE Optima and Sopha DST). (b) To establish appropriate acquisition and analytical clinical protocols. Methodology: For each instrument, the tomographic spatial resolution, contrast and sensitivity were measured. The capability of a new slant hole collimator (IGE Optima) to perform radionuclide ventriculography (RNV) was assessed. To evaluate the utility of these systems, a total of 1215 patient studies were performed (1007 cardiac, 85 skeletal, 73 renal and 50 brain studies). The effect of 8, 16 and 32 minutes data acquisition on image quality and clinical relevance was evaluated. In addition, a new cardiac SPET protocol for rest/stress myocardial perfusion scintigraphy (thallium-201/Tc-99m tetrofosmin) was tested. Results: Tomographic spatial resolution of the order of 10 mm FWHM was achieved by all four systems. System sensitivity was related to the number of detectors and ranged between 9.2–11.2 Kcps/(MBq/ml)/cm per detector. The slant hole collimator with cephalic tilt gave highly reproducible results (r=0.98,SEE=+2) for ejection fraction measurements in 75 patients. There was no significant difference in the clinical information obtained using 8 min, 16 min and 32 min acquisitions. Based on patient studies and experience with these multidetector SPET systems, optimum acquisition and analysis protocols for commonly performed SPET studies were documented for routine clinical use. Artefacts due to patient movement during Tl-201 myocardial SPET studies were less frequent on a dual-detector system compared with a single detector system (0.7% and 4% respectively); while artefacts due to poor positioning or shift in centre of rotation were more. The rest/stress thallium-201/Tc-99m tetrofosmin study protocol (acquisition and analysis) was completed in 90 min. This protocol gave a sensitivity of 80% and specificity of 70% for the detection of coronary artery disease. Conclusion: For the first time a comprehensive comparison of multidetector SPET systems has been documented. Optimum acquisition and analysis protocols have been identified. The study also shows that the new generation of multidetector SPET systems offer adequate resolution and sensitivity for routine clinical imaging. Increased sensitivity can be translated into an increased patient throughput. This can increase the cost-effectiveness of this new technology
    • …
    corecore