63,997 research outputs found

    Divided we stand: Parallel distributed stack memory management

    Get PDF
    We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs

    2Planning for Contingencies: A Decision-based Approach

    Full text link
    A fundamental assumption made by classical AI planners is that there is no uncertainty in the world: the planner has full knowledge of the conditions under which the plan will be executed and the outcome of every action is fully predictable. These planners cannot therefore construct contingency plans, i.e., plans in which different actions are performed in different circumstances. In this paper we discuss some issues that arise in the representation and construction of contingency plans and describe Cassandra, a partial-order contingency planner. Cassandra uses explicit decision-steps that enable the agent executing the plan to decide which plan branch to follow. The decision-steps in a plan result in subgoals to acquire knowledge, which are planned for in the same way as any other subgoals. Cassandra thus distinguishes the process of gathering information from the process of making decisions. The explicit representation of decisions in Cassandra allows a coherent approach to the problems of contingent planning, and provides a solid base for extensions such as the use of different decision-making procedures.Comment: See http://www.jair.org/ for any accompanying file

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Abstraction of Agents Executing Online and their Abilities in the Situation Calculus

    Get PDF
    We develop a general framework for abstracting online behavior of an agent that may acquire new knowledge during execution (e.g., by sensing), in the situation calculus and ConGolog. We assume that we have both a high-level action theory and a low-level one that represent the agent's behavior at different levels of detail. In this setting, we define ability to perform a task/achieve a goal, and then show that under some reasonable assumptions, if the agent has a strategy by which she is able to achieve a goal at the high level, then we can refine it into a low-level strategy to do so

    Abstraction in situation calculus action theories

    Get PDF
    We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent’s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584
    • …
    corecore