46 research outputs found

    Suitability of Fast Healthcare Interoperability Resources (FHIR) for Wellness Data

    Get PDF
    Wellness data generated by patients using smart phones and portable devices can be a key part of Personal Health Record (PHR) data and offers healthcare service providers (healthcare providers) patient health information on a daily basis. Prior research has identified the potential for improved communication between healthcare provider and patient. However the practice of sharing patient generated wellness data has not been widely adopted by the healthcare sector; one of the reasons being the lack of interoperability preventing successful integration of such device generated data into the PHR and Electronic Health Record (EHR) systems. To address the interoperability issue it is important to make sure that wellness data can be supported in healthcare information exchange standards. Fast Healthcare Interoperability Resources (FHIR) is used in the current research study to identify the technical feasibility for patient generated wellness data. FHIR is expected to be the future healthcare information exchange standard in the healthcare industry. \ A conceptual data model of wellness data was developed for evaluation using FHIR standard. The conceptual data model contained blood glucose readings, blood pressure readings and Body Mass Index (BMI) data and could be extended to accept other types of wellness data. The wellness data model was packaged in an official FHIR resource called Observation. The research study proved the flexibility of adding new data elements related to wellness in Observation. It met the requirements in FHIR to include such data elements useful in self-management of chronic diseases. It also had the potential in sharing it with the healthcare provider system.

    Teleglaucoma: ready to go?

    Get PDF
    Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Opportunities And Challenges of E-Health and Telemedicine Via Satelite

    Get PDF
    The introduction of Information and Communication Technology (ICT) in the health scenario is instrumental for the development of sustainable services of direct benefit for the European citizen. The setting up of satellite based applications will enhance rapidly the decentralisation and the enrichment of the European territory driving it towards a homogenous environment for healthcare

    Conceptual Framework for Semantic Interoperability in Sensor-enhanced Health Information Systems (SIOp4Se-HIS)

    Get PDF
    Transducer integration into different accessories such as eyeglasses, wristbands, vest, wristwatches, among others, has brought myriads of physiological data that could be of help in making patients health monitoring easier. However, this myriad of data are generated from different devices with different formats and uncoordinated data types which ultimately compromises the data integrity and renders it medically less importance. Furthermore, several wearables do operate as data island as they cannot incorporate their captured data into the Health Information Systems (HIS) for easy accessibility by the health-care professionals for further processing, interpretation and actions on the patients’ health. Therefore, to enable the flow of data that will be useful to both patient and health-care professional, the existing HIS should be transducer enhanced / enabled, and they should operate at the same semantic interoperability level to allow for exchange of meaningful data from transducers to HIS. In bid to achieve this, several attempts have been made using standards, and archetypes, which goes a long way in providing interoperability at the technical and syntactic level. However, repositories of heterogeneous transducer data as provided by health monitoring systems, requires actionable knowledge of context (environment) from which the data is collected for it to be medically useful and interoperate at the semantic level with the HIS. There are three approaches: the model-driven; standard based and archetype approach but only the ontology driven guarantees making the applications smarter, or make the data smarter. The study propose the latter option using a dual model approach to leverage semantic technologies in order to provide and apply more meaningful health monitoring data representation between transducers and HIS. We approached this study using the design science research methodology and developed a hybrid methodology by combining two methods to develop our ontologies that are based on standards in the domains, with this unique method we achieved a novel approach to solve the obstacle of semantic interoperability through our proposed framework for Semantic Interoperability for Sensor-enhanced Health Information Systems (se-HIS) and bridged the gaps in systems’ interoperability between monitoring units and HIS. The outcome is a robust, explicit conceptual framework for sensor-enhanced health information systems Interoperability (IOp) at the semantic level. This semantically enabled our HIS, to interoperate with Transducers that are compliant with the Institute of Electrical and Electronics Engineers (IEEE) 21451 family of standards, and it provides the ability to query high-level knowledge of the data context as well as low-level raw data accessibility in a multi-transducer enable HIS

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe
    corecore