1,846 research outputs found

    Number representation using generalized (−β)(-\beta)-transformation

    Full text link
    We study non-standard number systems with negative base −β-\beta. Instead of the Ito-Sadahiro definition, based on the transformation T−βT_{-\beta} of the interval [−ββ+1,1β+1)\big[-\frac{\beta}{\beta+1},\frac{1}{\beta+1}\big) into itself, we suggest a generalization using an interval [l,l+1)[l,l+1) with l∈(−1,0]l\in(-1,0]. Such generalization may eliminate certain disadvantages of the Ito-Sadahiro system. We focus on the description of admissible digit strings and their periodicity.Comment: 22 page

    A Probabilistic Approach to Generalized Zeckendorf Decompositions

    Full text link
    Generalized Zeckendorf decompositions are expansions of integers as sums of elements of solutions to recurrence relations. The simplest cases are base-bb expansions, and the standard Zeckendorf decomposition uses the Fibonacci sequence. The expansions are finite sequences of nonnegative integer coefficients (satisfying certain technical conditions to guarantee uniqueness of the decomposition) and which can be viewed as analogs of sequences of variable-length words made from some fixed alphabet. In this paper we present a new approach and construction for uniform measures on expansions, identifying them as the distribution of a Markov chain conditioned not to hit a set. This gives a unified approach that allows us to easily recover results on the expansions from analogous results for Markov chains, and in this paper we focus on laws of large numbers, central limit theorems for sums of digits, and statements on gaps (zeros) in expansions. We expect the approach to prove useful in other similar contexts.Comment: Version 1.0, 25 pages. Keywords: Zeckendorf decompositions, positive linear recurrence relations, distribution of gaps, longest gap, Markov processe

    Substitutions over infinite alphabet generating (-\beta)-integers

    Full text link
    This contribution is devoted to the study of positional numeration systems with negative base introduced by Ito and Sadahiro in 2009, called (-\beta)-expansions. We give an admissibility criterion for more general case of (-\beta)-expansions and discuss the properties of the set of (-\beta)-integers. We give a description of distances within this set and show that this set can be coded by an infinite word over an infinite alphabet, which is a fixed point of a non-erasing non-trivial morphism.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Fractal tiles associated with shift radix systems

    Get PDF
    Shift radix systems form a collection of dynamical systems depending on a parameter r\mathbf{r} which varies in the dd-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned out to be important for studying properties of expansions in several settings. In the present paper we associate a collection of fractal tiles with shift radix systems. We show that for certain classes of parameters r\mathbf{r} these tiles coincide with affine copies of the well-known tiles associated with beta-expansions and canonical number systems. On the other hand, these tiles provide natural families of tiles for beta-expansions with (non-unit) Pisot numbers as well as canonical number systems with (non-monic) expanding polynomials. We also prove basic properties for tiles associated with shift radix systems. Indeed, we prove that under some algebraic conditions on the parameter r\mathbf{r} of the shift radix system, these tiles provide multiple tilings and even tilings of the dd-dimensional real vector space. These tilings turn out to have a more complicated structure than the tilings arising from the known number systems mentioned above. Such a tiling may consist of tiles having infinitely many different shapes. Moreover, the tiles need not be self-affine (or graph directed self-affine)

    Numeration Systems: a Link between Number Theory and Formal Language Theory

    Full text link
    We survey facts mostly emerging from the seminal results of Alan Cobham obtained in the late sixties and early seventies. We do not attempt to be exhaustive but try instead to give some personal interpretations and some research directions. We discuss the notion of numeration systems, recognizable sets of integers and automatic sequences. We briefly sketch some results about transcendence related to the representation of real numbers. We conclude with some applications to combinatorial game theory and verification of infinite-state systems and present a list of open problems.Comment: 21 pages, 3 figures, invited talk DLT'201

    Shift Radix Systems - A Survey

    Full text link
    Let d≥1d\ge 1 be an integer and r=(r0,…,rd−1)∈Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:Zd→Zd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,…,zd−1,−⌊rz⌋)t(z=(z0,…,zd−1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each z∈Zd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure
    • …
    corecore