78,466 research outputs found

    SurfNet: Generating 3D shape surfaces using deep residual networks

    Full text link
    3D shape models are naturally parameterized using vertices and faces, \ie, composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent `geometry images' representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images.Comment: CVPR 2017 pape

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Learning a Hierarchical Latent-Variable Model of 3D Shapes

    Full text link
    We propose the Variational Shape Learner (VSL), a generative model that learns the underlying structure of voxelized 3D shapes in an unsupervised fashion. Through the use of skip-connections, our model can successfully learn and infer a latent, hierarchical representation of objects. Furthermore, realistic 3D objects can be easily generated by sampling the VSL's latent probabilistic manifold. We show that our generative model can be trained end-to-end from 2D images to perform single image 3D model retrieval. Experiments show, both quantitatively and qualitatively, the improved generalization of our proposed model over a range of tasks, performing better or comparable to various state-of-the-art alternatives.Comment: Accepted as oral presentation at International Conference on 3D Vision (3DV), 201

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]
    corecore