14,490 research outputs found

    The Distributed Ontology Language (DOL): Use Cases, Syntax, and Extensibility

    Full text link
    The Distributed Ontology Language (DOL) is currently being standardized within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3. It aims at providing a unified framework for (1) ontologies formalized in heterogeneous logics, (2) modular ontologies, (3) links between ontologies, and (4) annotation of ontologies. This paper presents the current state of DOL's standardization. It focuses on use cases where distributed ontologies enable interoperability and reusability. We demonstrate relevant features of the DOL syntax and semantics and explain how these integrate into existing knowledge engineering environments.Comment: Terminology and Knowledge Engineering Conference (TKE) 2012-06-20 to 2012-06-21 Madrid, Spai

    LoLa: a modular ontology of logics, languages and translations

    Get PDF
    The Distributed Ontology Language (DOL), currently being standardised within the OntoIOp (Ontology Integration and Interoperability) activity of ISO/TC 37/SC 3, aims at providing a unified framework for (i) ontologies formalised in heterogeneous logics, (ii) modular ontologies, (iii) links between ontologies, and (iv) annotation of ontologies.\ud \ud This paper focuses on the LoLa ontology, which formally describes DOL's vocabulary for logics, ontology languages (and their serialisations), as well as logic translations. Interestingly, to adequately formalise the logical relationships between these notions, LoLa itself needs to be axiomatised heterogeneously---a task for which we choose DOL. Namely, we use the logic RDF for ABox assertions, OWL for basic axiomatisations of various modules concerning logics, languages, and translations, FOL for capturing certain closure rules that are not expressible in OWL (For the sake of tool availability it is still helpful not to map everything to FOL.), and circumscription for minimising the extension of concepts describing default translations

    Relation-Changing Logics as Fragments of Hybrid Logics

    Full text link
    Relation-changing modal logics are extensions of the basic modal logic that allow changes to the accessibility relation of a model during the evaluation of a formula. In particular, they are equipped with dynamic modalities that are able to delete, add, and swap edges in the model, both locally and globally. We provide translations from these logics to hybrid logic along with an implementation. In general, these logics are undecidable, but we use our translations to identify decidable fragments. We also compare the expressive power of relation-changing modal logics with hybrid logics.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    Towards MKM in the Large: Modular Representation and Scalable Software Architecture

    Full text link
    MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM "in the small" is well-studied, so the real problem is to scale up to large, highly interconnected corpora: "MKM in the large". We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases. We present instances of both in this paper: the MMT framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDoc version; and TNTBase, a versioned storage system for XML-based document formats. TNTBase becomes an MMT database by instantiating it with special MKM operations for MMT.Comment: To appear in The 9th International Conference on Mathematical Knowledge Management: MKM 201

    Where Fail-Safe Default Logics Fail

    Full text link
    Reiter's original definition of default logic allows for the application of a default that contradicts a previously applied one. We call failure this condition. The possibility of generating failures has been in the past considered as a semantical problem, and variants have been proposed to solve it. We show that it is instead a computational feature that is needed to encode some domains into default logic

    Mixing HOL and Coq in Dedukti (Extended Abstract)

    Full text link
    We use Dedukti as a logical framework for interoperability. We use automated tools to translate different developments made in HOL and in Coq to Dedukti, and we combine them to prove new results. We illustrate our approach with a concrete example where we instantiate a sorting algorithm written in Coq with the natural numbers of HOL.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Satisfiability for relation-changing logics

    Get PDF
    Relation-changing modal logics (RC for short) are extensions of the basic modal logic with dynamic operators that modify the accessibility relation of a model during the evaluation of a formula. These languages are equipped with dynamic modalities that are able e.g. to delete, add and swap edges in the model, both locally and globally. We study the satisfiability problem for some of these logics.We first show that they can be translated into hybrid logic. As a result, we can transfer some results from hybrid logics to RC. We discuss in particular decidability for some fragments. We then show that satisfiability is, in general, undecidable for all the languages introduced, via translations from memory logics.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Fervari, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martel, Mauricio. Universitat Bremen; Alemani
    • …
    corecore