85,294 research outputs found

    Diffusion of Context and Credit Information in Markovian Models

    Full text link
    This paper studies the problem of ergodicity of transition probability matrices in Markovian models, such as hidden Markov models (HMMs), and how it makes very difficult the task of learning to represent long-term context for sequential data. This phenomenon hurts the forward propagation of long-term context information, as well as learning a hidden state representation to represent long-term context, which depends on propagating credit information backwards in time. Using results from Markov chain theory, we show that this problem of diffusion of context and credit is reduced when the transition probabilities approach 0 or 1, i.e., the transition probability matrices are sparse and the model essentially deterministic. The results found in this paper apply to learning approaches based on continuous optimization, such as gradient descent and the Baum-Welch algorithm.Comment: See http://www.jair.org/ for any accompanying file

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application
    • …
    corecore