41,094 research outputs found

    Representing Concepts by Weighted Formulas

    Get PDF
    A concept is traditionally defined via the necessary and sufficient conditions that clearly determine its extension. By contrast, cognitive views of concepts intend to account for empirical data that show that categorisation under a concept presents typicality effects and a certain degree of indeterminacy. We propose a formal language to compactly represent concepts by leveraging on weighted logical formulas. In this way, we can model the possible synergies among the qualities that are relevant for categorising an object under a concept. We show that our proposal can account for a number of views of concepts such as the prototype theory and the exemplar theory. Moreover, we show how the proposed model can overcome some limitations of cognitive views

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review

    Boolean Hedonic Games

    Full text link
    We study hedonic games with dichotomous preferences. Hedonic games are cooperative games in which players desire to form coalitions, but only care about the makeup of the coalitions of which they are members; they are indifferent about the makeup of other coalitions. The assumption of dichotomous preferences means that, additionally, each player's preference relation partitions the set of coalitions of which that player is a member into just two equivalence classes: satisfactory and unsatisfactory. A player is indifferent between satisfactory coalitions, and is indifferent between unsatisfactory coalitions, but strictly prefers any satisfactory coalition over any unsatisfactory coalition. We develop a succinct representation for such games, in which each player's preference relation is represented by a propositional formula. We show how solution concepts for hedonic games with dichotomous preferences are characterised by propositional formulas.Comment: This paper was orally presented at the Eleventh Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2014) in Bergen, Norway, July 27-30, 201

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model
    corecore