127,847 research outputs found

    Representing Case Variations for Learning General and Specific Adaptation Rules

    Get PDF
    International audienceAdaptation is a task of case-based reasoning systems that is largely domain-dependant. This motivates the study of adaptation knowledge acquisition (AKA) that can be carried out thanks to learning processes on the variations between cases of the case base. This paper studies the representation of these variations and the impact of this representation on the AKA process, through experiments in an oncology domain

    Case Base Mining for Adaptation Knowledge Acquisition

    Get PDF
    In case-based reasoning, the adaptation of a source case in order to solve the target problem is at the same time crucial and difficult to implement. The reason for this difficulty is that, in general, adaptation strongly depends on domain-dependent knowledge. This fact motivates research on adaptation knowledge acquisition (AKA). This paper presents an approach to AKA based on the principles and techniques of knowledge discovery from databases and data-mining. It is implemented in CABAMAKA, a system that explores the variations within the case base to elicit adaptation knowledge. This system has been successfully tested in an application of case-based reasoning to decision support in the domain of breast cancer treatment

    Adaptive Mechanisms in an Airline Ticket Demand Forecasting System

    Get PDF
    Adaptivity is a very important feature for industrial forecast systems. In the airline industry, a reliable forecasting of a demand for tickets at different fare levels forms a crucial step in a global optimization process, the objective of which is to sell a restricted number of available seats in a plane with a maximized revenue. Due to continuously changing demand caused by seasonality, special events like holidays or fairs, changes in the flight schedules or changes of the political or cultural situation of a country, there is a need for robust, adaptive forecasting techniques able to cope with such changes. In this paper an overview of various adaptive mechanisms used in the new forecasting system of the Lufthansa Airline is presented

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling

    Neural Mechanisms for Information Compression by Multiple Alignment, Unification and Search

    Get PDF
    This article describes how an abstract framework for perception and cognition may be realised in terms of neural mechanisms and neural processing. This framework — called information compression by multiple alignment, unification and search (ICMAUS) — has been developed in previous research as a generalized model of any system for processing information, either natural or artificial. It has a range of applications including the analysis and production of natural language, unsupervised inductive learning, recognition of objects and patterns, probabilistic reasoning, and others. The proposals in this article may be seen as an extension and development of Hebb’s (1949) concept of a ‘cell assembly’. The article describes how the concept of ‘pattern’ in the ICMAUS framework may be mapped onto a version of the cell assembly concept and the way in which neural mechanisms may achieve the effect of ‘multiple alignment’ in the ICMAUS framework. By contrast with the Hebbian concept of a cell assembly, it is proposed here that any one neuron can belong in one assembly and only one assembly. A key feature of present proposals, which is not part of the Hebbian concept, is that any cell assembly may contain ‘references’ or ‘codes’ that serve to identify one or more other cell assemblies. This mechanism allows information to be stored in a compressed form, it provides a robust mechanism by which assemblies may be connected to form hierarchies and other kinds of structure, it means that assemblies can express abstract concepts, and it provides solutions to some of the other problems associated with cell assemblies. Drawing on insights derived from the ICMAUS framework, the article also describes how learning may be achieved with neural mechanisms. This concept of learning is significantly different from the Hebbian concept and appears to provide a better account of what we know about human learning

    Connecting adaptive behaviour and expectations in models of innovation: The Potential Role of Artificial Neural Networks

    Get PDF
    In this methodological work I explore the possibility of explicitly modelling expectations conditioning the R&D decisions of firms. In order to isolate this problem from the controversies of cognitive science, I propose a black box strategy through the concept of “internal model”. The last part of the article uses artificial neural networks to model the expectations of firms in a model of industry dynamics based on Nelson & Winter (1982)
    • 

    corecore