11,550 research outputs found

    Polynomial Threshold Functions, AC^0 Functions and Spectral Norms

    Get PDF
    The class of polynomial-threshold functions is studied using harmonic analysis, and the results are used to derive lower bounds related to AC^0 functions. A Boolean function is polynomial threshold if it can be represented as a sign function of a sparse polynomial (one that consists of a polynomial number of terms). The main result is that polynomial-threshold functions can be characterized by means of their spectral representation. In particular, it is proved that a Boolean function whose L_1 spectral norm is bounded by a polynomial in n is a polynomial-threshold function, and that a Boolean function whose L_∞^(-1) spectral norm is not bounded by a polynomial in n is not a polynomial-threshold function. Some results for AC^0 functions are derived

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:An{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,m1}n\{0,...,m-1\}^n with the degree in each variable at most m1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(m2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,m1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}n×{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Representing a P-complete problem by small trellis automata

    Full text link
    A restricted case of the Circuit Value Problem known as the Sequential NOR Circuit Value Problem was recently used to obtain very succinct examples of conjunctive grammars, Boolean grammars and language equations representing P-complete languages (Okhotin, http://dx.doi.org/10.1007/978-3-540-74593-8_23 "A simple P-complete problem and its representations by language equations", MCU 2007). In this paper, a new encoding of the same problem is proposed, and a trellis automaton (one-way real-time cellular automaton) with 11 states solving this problem is constructed

    Cyclic Boolean circuits

    Get PDF
    A Boolean circuit is a collection of gates and wires that performs a mapping from Boolean inputs to Boolean outputs. The accepted wisdom is that such circuits must have acyclic (i.e., loop-free or feed-forward) topologies. In fact, the model is often defined this way – as a directed acyclic graph (DAG). And yet simple examples suggest that this is incorrect. We advocate that Boolean circuits should have cyclic topologies (i.e., loops or feedback paths). In other work, we demonstrated the practical implications of this view: digital circuits can be designed with fewer gates if they contain cycles. In this paper, we explore the theoretical underpinnings of the idea. We show that the complexity of implementing Boolean functions can be lower with cyclic topologies than with acyclic topologies. With examples, we show that certain Boolean functions can be implemented by cyclic circuits with as little as one-half the number gates that are required by equivalent acyclic circuits

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{1,1}n{1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(npolylog(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant δ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1δ)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant δ>0\delta > 0, an Ω(n1δ)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur

    AND and/or OR: Uniform Polynomial-Size Circuits

    Get PDF
    We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the norm for Boolean circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its input variables. Determining that subset amounts to solving a number of reachability questions on a polynomial-size directed graph (which input gates are connected to the output gate?), taken from a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability problem can be solved, by say, uniform AC^0 circuits (constant depth, polynomial-size, AND, OR, NOT gates). This is one reason why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural and worthy of study. Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND circuits, in terms of known uniform machine-based complexity classes. In particular, we consider the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety of reduction types. We give upper and lower bounds on the computational power of these language classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then, some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp(d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXP⊈TC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp(d)n^{1+\exp(-d)} wires), runs in time at most 2nexp(d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1Ω(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction
    corecore