35,969 research outputs found

    "Che tempo, che tempo": geology and environment in Max Frisch´s Der Mensch erscheint im Holozän

    Get PDF
    Critical readings of Frisch’s Der Mensch erscheint im Holozän [Man in the Holo-cene] have tended to read its heterogeneous and inter-medial form as a code for the mental disintegration of its protagonist. This paper argues instead that this feature can be seen as a poetological engagement with geological and climatic timescales. Due to its hybrid form, the incorporation of a multiplicity of textual fragments and pictorial representations, the text undermines both conventional definitions of narra-tive and representations of nature. Holozän’s non-linear structure establishes an aes-thetic of slowness that ushers in an awareness of the utterly different time schemes of geological and climatic processes. Furthermore, the importance of the material features, such as an interplay between text and image and the disconnected, paratac-tical arrangement of sentences mirrors the novel’s focus on natural phenomena. Frisch’s narrative establishes a poetics that tries to reach beyond the confinements of an anthropocentric perspective and thereby subverts the borders between culture and environment

    How to Identify Scientifc Revolutions?

    Get PDF
    Conceptualizing scientific revolutions by means of explicating their causes, their underlying structure and implications has been an important part of Kuhn's philosophy of science and belongs to its legacy. In this paper we show that such “explanatory concepts” of revolutions should be distinguished from a concept based on the identification criteria of scientific revolutions. The aim of this paper is to offer such a concept, and to show that it can be fruitfully used for a further elaboration of the explanatory conceptions of revolutions. On the one hand, our concept can be used to test the preciseness and accuracy of these conceptions, by examining to what extent their criteria fit revolutions as they are defined by our concept. On the other hand, our concept can serve as the basis on which these conceptions can be further specified. We will present four different explanatory concepts of revolutions – Kuhn's, Thagard's, Chen's and Barker's, and Laudan's – and point to the ways in which each of them can be further specified in view of our concept

    Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    Get PDF
    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm reconstructs successfully the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershocks sequence of the 28th June 1992 Landers earthquake in Southern California, the reconstructed plane segments fully agree with faults already known on geological maps, or with blind faults that appear quite obvious on longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multi-scale study of the inner structure of fault zones

    Rainfall-runoff and other modelling for ungauged/low-benefit locations: Operational Guidelines

    Get PDF

    Recognition and reconstruction of coherent energy with application to deep seismic reflection data

    Get PDF
    Reflections in deep seismic reflection data tend to be visible on only a limited number of traces in a common midpoint gather. To prevent stack degeneration, any noncoherent reflection energy has to be removed. In this paper, a standard classification technique in remote sensing is presented to enhance data quality. It consists of a recognition technique to detect and extract coherent energy in both common shot gathers and fi- nal stacks. This technique uses the statistics of a picked seismic phase to obtain the likelihood distribution of its presence. Multiplication of this likelihood distribution with the original data results in a “cleaned up” section. Application of the technique to data from a deep seismic reflection experiment enhanced the visibility of all reflectors considerably. Because the recognition technique cannot produce an estimate of “missing” data, it is extended with a reconstruction method. Two methods are proposed: application of semblance weighted local slant stacks after recognition, and direct recognition in the linear tau-p domain. In both cases, the power of the stacking process to increase the signal-to-noise ratio is combined with the direct selection of only specific seismic phases. The joint application of recognition and reconstruction resulted in data images which showed reflectors more clearly than application of a single technique
    • …
    corecore