1,507 research outputs found

    Learning to detect chest radiographs containing lung nodules using visual attention networks

    Get PDF
    Machine learning approaches hold great potential for the automated detection of lung nodules in chest radiographs, but training the algorithms requires vary large amounts of manually annotated images, which are difficult to obtain. Weak labels indicating whether a radiograph is likely to contain pulmonary nodules are typically easier to obtain at scale by parsing historical free-text radiological reports associated to the radiographs. Using a repositotory of over 700,000 chest radiographs, in this study we demonstrate that promising nodule detection performance can be achieved using weak labels through convolutional neural networks for radiograph classification. We propose two network architectures for the classification of images likely to contain pulmonary nodules using both weak labels and manually-delineated bounding boxes, when these are available. Annotated nodules are used at training time to deliver a visual attention mechanism informing the model about its localisation performance. The first architecture extracts saliency maps from high-level convolutional layers and compares the estimated position of a nodule against the ground truth, when this is available. A corresponding localisation error is then back-propagated along with the softmax classification error. The second approach consists of a recurrent attention model that learns to observe a short sequence of smaller image portions through reinforcement learning. When a nodule annotation is available at training time, the reward function is modified accordingly so that exploring portions of the radiographs away from a nodule incurs a larger penalty. Our empirical results demonstrate the potential advantages of these architectures in comparison to competing methodologies

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    Medical image retrieval for augmenting diagnostic radiology

    Get PDF
    Even though the use of medical imaging to diagnose patients is ubiquitous in clinical settings, their interpretations are still challenging for radiologists. Many factors make this interpretation task difficult, one of which is that medical images sometimes present subtle clues yet are crucial for diagnosis. Even worse, on the other hand, similar clues could indicate multiple diseases, making it challenging to figure out the definitive diagnoses. To help radiologists quickly and accurately interpret medical images, there is a need for a tool that can augment their diagnostic procedures and increase efficiency in their daily workflow. A general-purpose medical image retrieval system can be such a tool as it allows them to search and retrieve similar cases that are already diagnosed to make comparative analyses that would complement their diagnostic decisions. In this thesis, we contribute to developing such a system by proposing approaches to be integrated as modules of a single system, enabling it to handle various information needs of radiologists and thus augment their diagnostic processes during the interpretation of medical images. We have mainly studied the following retrieval approaches to handle radiologists’different information needs; i) Retrieval Based on Contents, ii) Retrieval Based on Contents, Patients’ Demographics, and Disease Predictions, and iii) Retrieval Based on Contents and Radiologists’ Text Descriptions. For the first study, we aimed to find an effective feature representation method to distinguish medical images considering their semantics and modalities. To do that, we have experimented different representation techniques based on handcrafted methods (mainly texture features) and deep learning (deep features). Based on the experimental results, we propose an effective feature representation approach and deep learning architectures for learning and extracting medical image contents. For the second study, we present a multi-faceted method that complements image contents with patients’ demographics and deep learning-based disease predictions, making it able to identify similar cases accurately considering the clinical context the radiologists seek. For the last study, we propose a guided search method that integrates an image with a radiologist’s text description to guide the retrieval process. This method guarantees that the retrieved images are suitable for the comparative analysis to confirm or rule out initial diagnoses (the differential diagnosis procedure). Furthermore, our method is based on a deep metric learning technique and is better than traditional content-based approaches that rely on only image features and, thus, sometimes retrieve insignificant random images

    Highly accurate model for prediction of lung nodule malignancy with CT scans

    Get PDF
    Computed tomography (CT) examinations are commonly used to predict lung nodule malignancy in patients, which are shown to improve noninvasive early diagnosis of lung cancer. It remains challenging for computational approaches to achieve performance comparable to experienced radiologists. Here we present NoduleX, a systematic approach to predict lung nodule malignancy from CT data, based on deep learning convolutional neural networks (CNN). For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort. All nodules were identified and classified by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of ~0.99. This is commensurate with the analysis of the dataset by experienced radiologists. Our approach, NoduleX, provides an effective framework for highly accurate nodule malignancy prediction with the model trained on a large patient population. Our results are replicable with software available at http://bioinformatics.astate.edu/NoduleX

    LungVISX:explaining lung nodule malignancy classification

    Get PDF
    • …
    corecore