2,255 research outputs found

    Chebyshev model arithmetic for factorable functions

    Get PDF
    This article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models. The global convergence of this arithmetic as the polynomial expansion order increases is also discussed. A generic implementation of Chebyshev model arithmetic is available in the library MC++. It is shown through several numerical case studies that Chebyshev models provide tighter bounds than their Taylor model counterparts, but this comes at the price of extra computational burden

    Orthogonal polynomials of compact simple Lie groups

    Get PDF
    Recursive algebraic construction of two infinite families of polynomials in nn variables is proposed as a uniform method applicable to every semisimple Lie group of rank nn. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type A1A_1. The obtained not Laurent-type polynomials are proved to be equivalent to the partial cases of the Macdonald symmetric polynomials. Basic relation between the polynomials and their properties follow from the corresponding properties of the orbit functions, namely the orthogonality and discretization. Recurrence relations are shown for the Lie groups of types A1A_1, A2A_2, A3A_3, C2C_2, C3C_3, G2G_2, and B3B_3 together with lowest polynomials.Comment: 34 pages, some minor changes were done, to appear in IJMM

    The finite Fourier transform of classical polynomials

    Full text link
    The finite Fourier transform of a family of orthogonal polynomials An(x)A_{n}(x), is the usual transform of the polynomial extended by 00 outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families

    A momentum-space Argonne V18 interaction

    Full text link
    This paper gives a momentum-space representation of the Argonne V18 potential as an expansion in products of spin-isospin operators with scalar coefficient functions of the momentum transfer. Two representations of the scalar coefficient functions for the strong part of the interaction are given. One is as an expansion in an orthonormal basis of rational functions and the other as an expansion in Chebyshev polynomials on different intervals. Both provide practical and efficient representations for computing the momentum-space potential that do not require integration or interpolation. Programs based on both expansions are available as supplementary material. Analytic expressions are given for the scalar coefficient functions of the Fourier transform of the electromagnetic part of the Argonne V18. A simple method for computing the partial-wave projections of these interactions from the operator expressions is also given.Comment: 61 pages. 26 figure

    Chebyshev type lattice path weight polynomials by a constant term method

    Full text link
    We prove a constant term theorem which is useful for finding weight polynomials for Ballot/Motzkin paths in a strip with a fixed number of arbitrary `decorated' weights as well as an arbitrary `background' weight. Our CT theorem, like Viennot's lattice path theorem from which it is derived primarily by a change of variable lemma, is expressed in terms of orthogonal polynomials which in our applications of interest often turn out to be non-classical. Hence we also present an efficient method for finding explicit closed form polynomial expressions for these non-classical orthogonal polynomials. Our method for finding the closed form polynomial expressions relies on simple combinatorial manipulations of Viennot's diagrammatic representation for orthogonal polynomials. In the course of the paper we also provide a new proof of Viennot's original orthogonal polynomial lattice path theorem. The new proof is of interest because it uses diagonalization of the transfer matrix, but gets around difficulties that have arisen in past attempts to use this approach. In particular we show how to sum over a set of implicitly defined zeros of a given orthogonal polynomial, either by using properties of residues or by using partial fractions. We conclude by applying the method to two lattice path problems important in the study of polymer physics as models of steric stabilization and sensitized flocculation.Comment: 27 pages, 14 figure
    • …
    corecore