4,030 research outputs found

    Parallelizing RRT on large-scale distributed-memory architectures

    Get PDF
    This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the Message Passing Interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion planning problems and analyze the various factors influencing their performance

    Parallelizing RRT on distributed-memory architectures

    Get PDF
    This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems

    SkiMap: An Efficient Mapping Framework for Robot Navigation

    Full text link
    We present a novel mapping framework for robot navigation which features a multi-level querying system capable to obtain rapidly representations as diverse as a 3D voxel grid, a 2.5D height map and a 2D occupancy grid. These are inherently embedded into a memory and time efficient core data structure organized as a Tree of SkipLists. Compared to the well-known Octree representation, our approach exhibits a better time efficiency, thanks to its simple and highly parallelizable computational structure, and a similar memory footprint when mapping large workspaces. Peculiarly within the realm of mapping for robot navigation, our framework supports realtime erosion and re-integration of measurements upon reception of optimized poses from the sensor tracker, so as to improve continuously the accuracy of the map.Comment: Accepted by International Conference on Robotics and Automation (ICRA) 2017. This is the submitted version. The final published version may be slightly differen

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Large-scale Parallel Stratified Defeasible Reasoning

    Get PDF
    We are recently experiencing an unprecedented explosion of available data from the Web, sensors readings, scientific databases, government authorities and more. Such datasets could benefit from the introduction of rule sets encoding commonly accepted rules or facts, application- or domain-specific rules, commonsense knowledge etc. This raises the question of whether, how, and to what extent knowledge representation methods are capable of handling huge amounts of data for these applications. In this paper, we consider inconsistency-tolerant reasoning in the form of defeasible logic, and analyze how parallelization, using the MapReduce framework, can be used to reason with defeasible rules over huge datasets. We extend previous work by dealing with predicates of arbitrary arity, under the assumption of stratification. Moving from unary to multi-arity predicates is a decisive step towards practical applications, e.g. reasoning with linked open (RDF) data. Our experimental results demonstrate that defeasible reasoning with millions of data is performant, and has the potential to scale to billions of facts

    The ALPS project: open source software for strongly correlated systems

    Full text link
    We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). The software is available from our web server at http://alps.comp-phys.org.Comment: For full software and introductory turorials see http://alps.comp-phys.or

    The Ariadne's Clew Algorithm

    Full text link
    We present a new approach to path planning, called the "Ariadne's clew algorithm". It is designed to find paths in high-dimensional continuous spaces and applies to robots with many degrees of freedom in static, as well as dynamic environments - ones where obstacles may move. The Ariadne's clew algorithm comprises two sub-algorithms, called Search and Explore, applied in an interleaved manner. Explore builds a representation of the accessible space while Search looks for the target. Both are posed as optimization problems. We describe a real implementation of the algorithm to plan paths for a six degrees of freedom arm in a dynamic environment where another six degrees of freedom arm is used as a moving obstacle. Experimental results show that a path is found in about one second without any pre-processing
    corecore