111,442 research outputs found

    A Generic Storage API

    Get PDF
    We present a generic API suitable for provision of highly generic storage facilities that can be tailored to produce various individually customised storage infrastructures. The paper identifies a candidate set of minimal storage system building blocks, which are sufficiently simple to avoid encapsulating policy where it cannot be customised by applications, and composable to build highly flexible storage architectures. Four main generic components are defined: the store, the namer, the caster and the interpreter. It is hypothesised that these are sufficiently general that they could act as building blocks for any information storage and retrieval system. The essential characteristics of each are defined by an interface, which may be implemented by multiple implementing classes.Comment: Submitted to ACSC 200

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    A schema for cryptographic keys generation using hybrid biometrics

    Get PDF
    Biometric identifiers refer to unique physical properties or behavioural attributes of individuals. Some of the well known biometric identifiers are voice, finger prints, retina or iris, facial structure etc. In our daily interaction with others directly or indirectly, we implicitly use biometrics to know, distinguish and trust people. Biometric identifiers represent the concept of "who a person is" by gathering vital characteristics that don't correspond to any other person. The human brain to some extent is able to ascertain disparities or variation in certain physical attributes and yet verify the authenticity of a person. But this is difficult to be implemented in electronic systems due to the intense requirements of artificial decision making and hard-coded logic. This paper examines the possibility of using a combination of biometric attributes to overcome common problems in having a single biometric scheme for authentication. It also investigates possible schemes and features to deal with variations in Biometric attributes. The material presented is related to ongoing research by the Computer Communications Research Group at Leeds Metropolitan University. We use this paper as a starting step and as a plan for advanced research. It offers ideas and proposition for implementing hybrid biometrics in conjunction with cryptography. This is work in progress and is in a very preliminary stage

    Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Full text link
    In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to accommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted for Carnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternary algorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval in which features like MFCC, spectral flux, melody string and spectral centroid are used as features for indexing data into a hash table. The way in which collision resolution was handled by this hash table is different than the normal hash table approaches. It was observed that multi-key hashing based retrieval had a lesser time complexity than dual-ternary based indexing The algorithms were also compared for their precision and recall in which multi-key hashing had a better recall than modified dual ternary indexing for the sample data considered.Comment: 11 pages, 5 figure

    Archiving scientific data

    Get PDF
    We present an archiving technique for hierarchical data with key structure. Our approach is based on the notion of timestamps whereby an element appearing in multiple versions of the database is stored only once along with a compact description of versions in which it appears. The basic idea of timestamping was discovered by Driscoll et. al. in the context of persistent data structures where one wishes to track the sequences of changes made to a data structure. We extend this idea to develop an archiving tool for XML data that is capable of providing meaningful change descriptions and can also efficiently support a variety of basic functions concerning the evolution of data such as retrieval of any specific version from the archive and querying the temporal history of any element. This is in contrast to diff-based approaches where such operations may require undoing a large number of changes or significant reasoning with the deltas. Surprisingly, our archiving technique does not incur any significant space overhead when contrasted with other approaches. Our experimental results support this and also show that the compacted archive file interacts well with other compression techniques. Finally, another useful property of our approach is that the resulting archive is also in XML and hence can directly leverage existing XML tools

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database
    corecore