633 research outputs found

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation

    Software agents & human behavior

    Get PDF
    People make important decisions in emergencies. Often these decisions involve high stakes in terms of lives and property. Bhopal disaster (1984), Piper Alpha disaster (1988), Montara blowout (2009), and explosion on Deepwater Horizon (2010) are a few examples among many industrial incidents. In these incidents, those who were in-charge took critical decisions under various ental stressors such as time, fatigue, and panic. This thesis presents an application of naturalistic decision-making (NDM), which is a recent decision-making theory inspired by experts making decisions in real emergencies. This study develops an intelligent agent model that can be programed to make human-like decisions in emergencies. The agent model has three major components: (1) A spatial learning module, which the agent uses to learn escape routes that are designated routes in a facility for emergency evacuation, (2) a situation recognition module, which is used to recognize or distinguish among evolving emergency situations, and (3) a decision-support module, which exploits modules in (1) and (2), and implements an NDM based decision-logic for producing human-like decisions in emergencies. The spatial learning module comprises a generalized stochastic Petri net-based model of spatial learning. The model classifies routes into five classes based on landmarks, which are objects with salient spatial features. These classes deal with the question of how difficult a landmark turns out to be when an agent observes it the first time during a route traversal. An extension to the spatial learning model is also proposed where the question of how successive route traversals may impact retention of a route in the agentā€™s memory is investigated. The situation awareness module uses Markov logic network (MLN) to define different offshore emergency situations using First-order Logic (FOL) rules. The purpose of this module is to give the agent the necessary experience of dealing with emergencies. The potential of this module lies in the fact that different training samples can be used to produce agents having different experience or capability to deal with an emergency situation. To demonstrate this fact, two agents were developed and trained using two different sets of empirical observations. The two are found to be different in recognizing the prepare-to-abandon-platform alarm (PAPA ), and similar to each other in recognition of an emergency using other cues. Finally, the decision-support module is proposed as a union of spatial-learning module, situation awareness module, and NDM based decision-logic. The NDM-based decision-logic is inspired by Kleinā€™s (1998) recognition primed decision-making (RPDM) model. The agentā€™s attitudes related to decision-making as per the RPDM are represented in the form of belief, desire, and intention (BDI). The decision-logic involves recognition of situations based on experience (as proposed in situation-recognition module), and recognition of situations based on classification, where ontological classification is used to guide the agent in cases where the agentā€™s experience about confronting a situation is inadequate. At the planning stage, the decision-logic exploits the agentā€™s spatial knowledge (as proposed in spatial-learning module) about the layout of the environment to make adjustments in the course of actions relevant to a decision that has already been made as a by-product of situation recognition. The proposed agent model has potential to be used to improve virtual training environmentā€™s fidelity by adding agents that exhibit human-like intelligence in performing tasks related to emergency evacuation. Notwithstanding, the potential to exploit the basis provided here, in the form of an agent representing human fallibility, should not be ignored for fields like human reliability analysis

    In-silico-Systemanalyse von Biopathways

    Get PDF
    Chen M. In silico systems analysis of biopathways. Bielefeld (Germany): Bielefeld University; 2004.In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways. This dissertation addresses these problems of in silico systems analysis of biopathways. We developed a software system to integrate the access to different databases, and exploited the Petri net methodology to model and simulate metabolic networks in cells. It develops a computer modeling and simulation technique based on Petri net methodology; investigates metabolic networks at a system level; proposes a markup language for biological data interchange among diverse biological simulators and Petri net tools; establishes a web-based information retrieval system for metabolic pathway prediction; presents an algorithm for metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and attempts to standardize the representation of biological pathways. Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic modeling strategy and Petri net modeling algorithm are applied to perform the processes of elements functioning and model analysis. The proposed methodology can be used for all other metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net modeling and simulation of metabolic networks are outlined. A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The concepts and terminology of the interchange format, as well as its syntax (which is based on XML) are introduced. BioPNML is designed to provide a starting point for the development of a standard interchange format for Bioinformatics and Petri nets. The language makes it possible to exchange biology Petri net diagrams between all supported hardware platforms and versions. It is also designed to associate Petri net models and other known metabolic simulators. A web-based metabolic information retrieval system, PathAligner, is developed in order to predict metabolic pathways from rudimentary elements of pathways. It extracts metabolic information from biological databases via the Internet, and builds metabolic pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also provides a navigation platform to investigate metabolic related information, and transforms the output data into XML files for further modeling and simulation of the reconstructed pathway. An alignment algorithm to compare the similarity between metabolic pathways is presented. A new definition of the metabolic pathway is proposed. The pathway defined as a linear event sequence is practical for our alignment algorithm. The algorithm is based on strip scoring the similarity of 4-hierarchical EC numbers involved in the pathways. The algorithm described has been implemented and is in current use in the context of the PathAligner system. Furthermore, new methods for the classification and nomenclature of cellular signal transductions are recommended. For each type of characterized signal transduction, a unique ST number is provided. The Signal Transduction Classification Database (STCDB), based on the proposed classification and nomenclature, has been established. By merging the ST numbers with EC numbers, alignments of biopathways are possible. Finally, a detailed model of urea cycle that includes gene regulatory networks, metabolic pathways and signal transduction is demonstrated by using our approaches. A system biological interpretation of the observed behavior of the urea cycle and its related transcriptomics information is proposed to provide new insights for metabolic engineering and medical care

    Evaluating Resilience of Cyber-Physical-Social Systems

    Get PDF
    Nowadays, protecting the network is not the only security concern. Still, in cyber security, websites and servers are becoming more popular as targets due to the ease with which they can be accessed when compared to communication networks. Another threat in cyber physical social systems with human interactions is that they can be attacked and manipulated not only by technical hacking through networks, but also by manipulating people and stealing usersā€™ credentials. Therefore, systems should be evaluated beyond cy- ber security, which means measuring their resilience as a piece of evidence that a system works properly under cyber-attacks or incidents. In that way, cyber resilience is increas- ingly discussed and described as the capacity of a system to maintain state awareness for detecting cyber-attacks. All the tasks for making a system resilient should proactively maintain a safe level of operational normalcy through rapid system reconfiguration to detect attacks that would impact system performance. In this work, we broadly studied a new paradigm of cyber physical social systems and defined a uniform definition of it. To overcome the complexity of evaluating cyber resilience, especially in these inhomo- geneous systems, we proposed a framework including applying Attack Tree refinements and Hierarchical Timed Coloured Petri Nets to model intruder and defender behaviors and evaluate the impact of each action on the behavior and performance of the system.Hoje em dia, proteger a rede nĆ£o Ć© a Ćŗnica preocupaĆ§Ć£o de seguranƧa. Ainda assim, na seguranƧa cibernĆ©tica, sites e servidores estĆ£o se tornando mais populares como alvos devido Ć  facilidade com que podem ser acessados quando comparados Ć s redes de comu- nicaĆ§Ć£o. Outra ameaƧa em sistemas sociais ciberfisicos com interaƧƵes humanas Ć© que eles podem ser atacados e manipulados nĆ£o apenas por hackers tĆ©cnicos atravĆ©s de redes, mas tambĆ©m pela manipulaĆ§Ć£o de pessoas e roubo de credenciais de utilizadores. Portanto, os sistemas devem ser avaliados para alĆ©m da seguranƧa cibernĆ©tica, o que significa medir sua resiliĆŖncia como uma evidĆŖncia de que um sistema funciona adequadamente sob ataques ou incidentes cibernĆ©ticos. Dessa forma, a resiliĆŖncia cibernĆ©tica Ć© cada vez mais discutida e descrita como a capacidade de um sistema manter a consciĆŖncia do estado para detectar ataques cibernĆ©ticos. Todas as tarefas para tornar um sistema resiliente devem manter proativamente um nĆ­vel seguro de normalidade operacional por meio da reconfi- guraĆ§Ć£o rĆ”pida do sistema para detectar ataques que afetariam o desempenho do sistema. Neste trabalho, um novo paradigma de sistemas sociais ciberfisicos Ć© amplamente estu- dado e uma definiĆ§Ć£o uniforme Ć© proposta. Para superar a complexidade de avaliar a resiliĆŖncia cibernĆ©tica, especialmente nesses sistemas nĆ£o homogĆ©neos, Ć© proposta uma estrutura que inclui a aplicaĆ§Ć£o de refinamentos de Ɓrvores de Ataque e Redes de Petri Coloridas Temporizadas HierĆ”rquicas para modelar comportamentos de invasores e de- fensores e avaliar o impacto de cada aĆ§Ć£o no comportamento e desempenho do sistema

    Computing multi-scale organizations built through assembly

    Get PDF
    The ability to generate and control assembling structures built over many orders of magnitude is an unsolved challenge of engineering and science. Many of the presumed transformational benefits of nanotechnology and robotics are based directly on this capability. There are still significant theoretical difficulties associated with building such systems, though technology is rapidly ensuring that the tools needed are becoming available in chemical, electronic, and robotic domains. In this thesis a simulated, general-purpose computational prototype is developed which is capable of unlimited assembly and controlled by external input, as well as an additional prototype which, in structures, can emulate any other computing device. These devices are entirely finite-state and distributed in operation. Because of these properties and the unique ability to form unlimited size structures of unlimited computational power, the prototypes represent a novel and useful blueprint on which to base scalable assembly in other domains. A new assembling model of Computational Organization and Regulation over Assembly Levels (CORAL) is also introduced, providing the necessary framework for this investigation. The strict constraints of the CORAL model allow only an assembling unit of a single type, distributed control, and ensure that units cannot be reprogrammed - all reprogramming is done via assembly. Multiple units are instead structured into aggregate computational devices using a procedural or developmental approach. Well-defined comparison of computational power between levels of organization is ensured by the structure of the model. By eliminating ambiguity, the CORAL model provides a pragmatic answer to open questions regarding a framework for hierarchical organization. Finally, a comparison between the designed prototypes and units evolved using evolutionary algorithms is presented as a platform for further research into novel scalable assembly. Evolved units are capable of recursive pairing ability under the control of a signal, a primitive form of unlimited assembly, and do so via symmetry-breaking operations at each step. Heuristic evidence for a required minimal threshold of complexity is provided by the results, and challenges and limitations of the approach are identified for future evolutionary studies

    Quantitative analysis of distributed systems

    Get PDF
    PhD ThesisComputing Science addresses the security of real-life systems by using various security-oriented technologies (e.g., access control solutions and resource allocation strategies). These security technologies signficantly increase the operational costs of the organizations in which systems are deployed, due to the highly dynamic, mobile and resource-constrained environments. As a result, the problem of designing user-friendly, secure and high efficiency information systems in such complex environment has become a major challenge for the developers. In this thesis, firstly, new formal models are proposed to analyse the secure information flow in cloud computing systems. Then, the opacity of work flows in cloud computing systems is investigated, a threat model is built for cloud computing systems, and the information leakage in such system is analysed. This study can help cloud service providers and cloud subscribers to analyse the risks they take with the security of their assets and to make security related decision. Secondly, a procedure is established to quantitatively evaluate the costs and benefits of implementing information security technologies. In this study, a formal system model for data resources in a dynamic environment is proposed, which focuses on the location of different classes of data resources as well as the users. Using such a model, the concurrent and probabilistic behaviour of the system can be analysed. Furthermore, efficient solutions are provided for the implementation of information security system based on queueing theory and stochastic Petri nets. This part of research can help information security officers to make well judged information security investment decisions

    A network-based system for assessment and management of infrastructure interdependency

    Get PDF
    Critical infrastructures (CIs) provide services that are essential to both the economy and well-being of nations and their citizens. Over the years, CIs are becoming more complex and interconnected, they are all interdependent in various ways, including logically, functionally, and geographically. The interconnection between CIs results in a very complex and dynamic system which increases their vulnerability to failures. In fact, when an infrastructure is experiencing failures, it can rapidly generate a cascade or domino effect to impact the other infrastructures. Thus, identifying, understanding and modeling infrastructure interdependency is a new field of research that deals with interrelationships between critical infrastructure sectors for disaster management. In the present research project, an integrated network-based analysis system with a user-friendly graphic user interface (GUI) was developed for risk analysis of complex critical infrastructure systems and their component interdependencies, called FCEPN (Fragility Curve and Extended Petri Net analysis). This approach combines: 1) Fragility Curve analysis of the vulnerability of the infrastructure, based on predefined "damage states" due to particular "hazards"; 2) Extended Petri Net analysis of the infrastructure system interdependency to determine the possible failure states and risk values. Two types of Extended Petri Net, Stochastic Petri Net and Fuzzy Petri Net were discussed in this study respectively. The FCEPN system was evaluated using the Bluestone Dam in West Virginia and Huai River Watershed in China as the case studies. Evaluation study results suggested that the FCEPN system provides a useful approach for analyzing dam system design, potential and actual vulnerability of dam networks to flood related impact, performance and reliability of existing dam systems, and appropriate maintenance and inspection work

    Contribution to the evaluation and optimization of passengers' screening at airports

    Get PDF
    Security threats have emerged in the past decades as a more and more critical issue for Air Transportation which has been one of the main ressource for globalization of economy. Reinforced control measures based on pluridisciplinary research and new technologies have been implemented at airports as a reaction to different terrorist attacks. From the scientific perspective, the efficient screening of passengers at airports remain a challenge and the main objective of this thesis is to open new lines of research in this field by developing advanced approaches using the resources of Computer Science. First this thesis introduces the main concepts and definitions of airport security and gives an overview of the passenger terminal control systems and more specifically the screening inspection positions are identified and described. A logical model of the departure control system for passengers at an airport is proposed. This model is transcribed into a graphical view (Controlled Satisfiability Graph-CSG) which allows to test the screening system with different attack scenarios. Then a probabilistic approach for the evaluation of the control system of passenger flows at departure is developped leading to the introduction of Bayesian Colored Petri nets (BCPN). Finally an optimization approach is adopted to organize the flow of passengers at departure as best as possible given the probabilistic performance of the elements composing the control system. After the establishment of a global evaluation model based on an undifferentiated serial processing of passengers, is analyzed a two-stage control structure which highlights the interest of pre-filtering and organizing the passengers into separate groups. The conclusion of this study points out for the continuation of this theme

    Towards semantics-driven modelling and simulation of context-aware manufacturing systems

    Get PDF
    Systems modelling and simulation are two important facets for thoroughly and effectively analysing manufacturing processes. The ever-growing complexity of the latter, the increasing amount of knowledge, and the use of Semantic Web techniques adhering meaning to data have led researchers to explore and combine together methodologies by exploiting their best features with the purpose of supporting manufacturing system's modelling and simulation applications. In the past two decades, the use of ontologies has proven to be highly effective for context modelling and knowledge management. Nevertheless, they are not meant for any kind of model simulations. The latter, instead, can be achieved by using a well-known workflow-oriented mathematical modelling language such as Petri Net (PN), which brings in modelling and analytical features suitable for creating a digital copy of an industrial system (also known as "digital twin"). The theoretical framework presented in this dissertation aims to exploit W3C standards, such as Semantic Web Rule Language (SWRL) and Web Ontology Language (OWL), to transform each piece of knowledge regarding a manufacturing system into Petri Net modelling primitives. In so doing, it supports the semantics-driven instantiation, analysis and simulation of what we call semantically-enriched PN-based manufacturing system digital twins. The approach proposed by this exploratory research is therefore based on the exploitation of the best features introduced by state-of-the-art developments in W3C standards for Linked Data, such as OWL and SWRL, together with a multipurpose graphical and mathematical modelling tool known as Petri Net. The former is used for gathering, classifying and properly storing industrial data and therefore enhances our PN-based digital copy of an industrial system with advanced reasoning features. This makes both the system modelling and analysis phases more effective and, above all, paves the way towards a completely new field, where semantically-enriched PN-based manufacturing system digital twins represent one of the drivers of the digital transformation already in place in all companies facing the industrial revolution. As a result, it has been possible to outline a list of indications that will help future efforts in the application of complex digital twin support oriented solutions, which in turn is based on semantically-enriched manufacturing information systems. Through the application cases, five key topics have been tackled, namely: (i) semantic enrichment of industrial data using the most recent ontological models in order to enhance its value and enable new uses; (ii) context-awareness, or context-adaptiveness, aiming to enable the system to capture and use information about the context of operations; (iii) reusability, which is a core concept through which we want to emphasize the importance of reusing existing assets in some form within the industrial modelling process, such as industrial process knowledge, process data, system modelling primitives, and the like; (iv) the ultimate goal of semantic Interoperability, which can be accomplished by adding data about the metadata, linking each data element to a controlled, shared vocabulary; finally, (v) the impact on modelling and simulation applications, which shows how we could automate the translation process of industrial knowledge into a digital manufacturing system and empower it with quantitative and qualitative analytical technics
    • ā€¦
    corecore