2,051 research outputs found

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference

    An introduction to DSmT

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach

    Fuzzy rough granular neural networks, fuzzy granules, and classification

    Get PDF
    AbstractWe introduce a fuzzy rough granular neural network (FRGNN) model based on the multilayer perceptron using a back-propagation algorithm for the fuzzy classification of patterns. We provide the development strategy of the network mainly based upon the input vector, initial connection weights determined by fuzzy rough set theoretic concepts, and the target vector. While the input vector is described in terms of fuzzy granules, the target vector is defined in terms of fuzzy class membership values and zeros. Crude domain knowledge about the initial data is represented in the form of a decision table, which is divided into subtables corresponding to different classes. The data in each decision table is converted into granular form. The syntax of these decision tables automatically determines the appropriate number of hidden nodes, while the dependency factors from all the decision tables are used as initial weights. The dependency factor of each attribute and the average degree of the dependency factor of all the attributes with respect to decision classes are considered as initial connection weights between the nodes of the input layer and the hidden layer, and the hidden layer and the output layer, respectively. The effectiveness of the proposed FRGNN is demonstrated on several real-life data sets

    Granular fuzzy models: a study in knowledge management in fuzzy modeling

    Get PDF
    AbstractIn system modeling, knowledge management comes vividly into the picture when dealing with a collection of individual models. These models being considered as sources of knowledge, are engaged in some collective pursuits of a collaborative development to establish modeling outcomes of global character. The result comes in the form of a so-called granular fuzzy model, which directly reflects upon and quantifies the diversity of the available sources of knowledge (local models) involved in knowledge management. In this study, several detailed algorithmic schemes are presented along with related computational aspects associated with Granular Computing. It is also shown how the construction of information granules completed through the use of the principle of justifiable granularity becomes advantageous in the realization of granular fuzzy models and a quantification of the quality (specificity) of the results of modeling. We focus on the design of granular fuzzy models considering that the locally available models are those fuzzy rule-based. It is shown that the model quantified in terms of two conflicting criteria, that is (a) a coverage criterion expressing to which extent the resulting information granules ā€œcoverā€ include data and (b) specificity criterion articulating how detailed (specific) the obtained information granules are. The overall quality of the granular model is also assessed by determining an area under curve (AUC) where the curve is formed in the coverage-specificity coordinates. Numeric results are discussed with intent of displaying the most essential features of the proposed methodology and algorithmic developments

    Complexity vs. performance in granular embedding spaces for graph classification

    Get PDF
    The most distinctive trait in structural pattern recognition in graph domain is the ability to deal with the organization and relations between the constituent entities of the pattern. Even if this can be convenient and/or necessary in many contexts, most of the state-of the art classi\ufb01cation techniques can not be deployed directly in the graph domain without \ufb01rst embedding graph patterns towards a metric space. Granular Computing is a powerful information processing paradigm that can be employed in order to drive the synthesis of automatic embedding spaces from structured domains. In this paper we investigate several classi\ufb01cation techniques starting from Granular Computing-based embedding procedures and provide a thorough overview in terms of model complexity, embedding space complexity and performances on several open-access datasets for graph classi\ufb01cation. We witness that certain classi\ufb01cation techniques perform poorly both from the point of view of complexity and learning performances as the case of non-linear SVM, suggesting that high dimensionality of the synthesized embedding space can negatively affect the effectiveness of these approaches. On the other hand, linear support vector machines, neuro-fuzzy networks and nearest neighbour classi\ufb01ers have comparable performances in terms of accuracy, with second being the most competitive in terms of structural complexity and the latter being the most competitive in terms of embedding space dimensionality

    Soft data mining, computational theory of perceptions, and rough-fuzzy approach

    Get PDF
    Data mining and knowledge discovery is described from pattern recognition point of view along with the relevance of soft computing. Key features of the computational theory of perceptions and its significance in pattern recognition and knowledge discovery problems are explained. Role of fuzzy-granulation (f-granulation) in machine and human intelligence, and its modeling through rough-fuzzy integration are discussed. Merits of fuzzy granular computation, in terms of performance and computation time, for the task of case generation in large scale case-based reasoning systems are illustrated through an example
    • ā€¦
    corecore