80,966 research outputs found

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    Reinforcement learning for efficient network penetration testing

    Get PDF
    Penetration testing (also known as pentesting or PT) is a common practice for actively assessing the defenses of a computer network by planning and executing all possible attacks to discover and exploit existing vulnerabilities. Current penetration testing methods are increasingly becoming non-standard, composite and resource-consuming despite the use of evolving tools. In this paper, we propose and evaluate an AI-based pentesting system which makes use of machine learning techniques, namely reinforcement learning (RL) to learn and reproduce average and complex pentesting activities. The proposed system is named Intelligent Automated Penetration Testing System (IAPTS) consisting of a module that integrates with industrial PT frameworks to enable them to capture information, learn from experience, and reproduce tests in future similar testing cases. IAPTS aims to save human resources while producing much-enhanced results in terms of time consumption, reliability and frequency of testing. IAPTS takes the approach of modeling PT environments and tasks as a partially observed Markov decision process (POMDP) problem which is solved by POMDP-solver. Although the scope of this paper is limited to network infrastructures PT planning and not the entire practice, the obtained results support the hypothesis that RL can enhance PT beyond the capabilities of any human PT expert in terms of time consumed, covered attacking vectors, accuracy and reliability of the outputs. In addition, this work tackles the complex problem of expertise capturing and re-use by allowing the IAPTS learning module to store and re-use PT policies in the same way that a human PT expert would learn but in a more efficient way

    Designing as Construction of Representations: A Dynamic Viewpoint in Cognitive Design Research

    Get PDF
    This article presents a cognitively oriented viewpoint on design. It focuses on cognitive, dynamic aspects of real design, i.e., the actual cognitive activity implemented by designers during their work on professional design projects. Rather than conceiving de-signing as problem solving - Simon's symbolic information processing (SIP) approach - or as a reflective practice or some other form of situated activity - the situativity (SIT) approach - we consider that, from a cognitive viewpoint, designing is most appropriately characterised as a construction of representations. After a critical discussion of the SIP and SIT approaches to design, we present our view-point. This presentation concerns the evolving nature of representations regarding levels of abstraction and degrees of precision, the function of external representations, and specific qualities of representation in collective design. Designing is described at three levels: the organisation of the activity, its strategies, and its design-representation construction activities (different ways to generate, trans-form, and evaluate representations). Even if we adopt a "generic design" stance, we claim that design can take different forms depending on the nature of the artefact, and we propose some candidates for dimensions that allow a distinction to be made between these forms of design. We discuss the potential specificity of HCI design, and the lack of cognitive design research occupied with the quality of design. We close our discussion of representational structures and activities by an outline of some directions regarding their functional linkages

    Self-organising agent communities for autonomic resource management

    No full text
    The autonomic computing paradigm addresses the operational challenges presented by increasingly complex software systems by proposing that they be composed of many autonomous components, each responsible for the run-time reconfiguration of its own dedicated hardware and software components. Consequently, regulation of the whole software system becomes an emergent property of local adaptation and learning carried out by these autonomous system elements. Designing appropriate local adaptation policies for the components of such systems remains a major challenge. This is particularly true where the system’s scale and dynamism compromise the efficiency of a central executive and/or prevent components from pooling information to achieve a shared, accurate evidence base for their negotiations and decisions.In this paper, we investigate how a self-regulatory system response may arise spontaneously from local interactions between autonomic system elements tasked with adaptively consuming/providing computational resources or services when the demand for such resources is continually changing. We demonstrate that system performance is not maximised when all system components are able to freely share information with one another. Rather, maximum efficiency is achieved when individual components have only limited knowledge of their peers. Under these conditions, the system self-organises into appropriate community structures. By maintaining information flow at the level of communities, the system is able to remain stable enough to efficiently satisfy service demand in resource-limited environments, and thus minimise any unnecessary reconfiguration whilst remaining sufficiently adaptive to be able to reconfigure when service demand changes

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)
    • 

    corecore