39,103 research outputs found

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments

    Global optimization of polynomials using gradient tentacles and sums of squares

    Full text link
    In this work, the combine the theory of generalized critical values with the theory of iterated rings of bounded elements (real holomorphy rings). We consider the problem of computing the global infimum of a real polynomial in several variables. Every global minimizer lies on the gradient variety. If the polynomial attains a minimum, it is therefore equivalent to look for the greatest lower bound on its gradient variety. Nie, Demmel and Sturmfels proved recently a theorem about the existence of sums of squares certificates for such lower bounds. Based on these certificates, they find arbitrarily tight relaxations of the original problem that can be formulated as semidefinite programs and thus be solved efficiently. We deal here with the more general case when the polynomial is bounded from belo w but does not necessarily attain a minimum. In this case, the method of Nie, Demmel and Sturmfels might yield completely wrong results. In order to overcome this problem, we replace the gradient variety by larger semialgebraic sets which we call gradient tentacles. It now gets substantially harder to prove the existence of the necessary sums of squares certificates.Comment: 22 page

    Exploiting symmetries in SDP-relaxations for polynomial optimization

    Full text link
    In this paper we study various approaches for exploiting symmetries in polynomial optimization problems within the framework of semi definite programming relaxations. Our special focus is on constrained problems especially when the symmetric group is acting on the variables. In particular, we investigate the concept of block decomposition within the framework of constrained polynomial optimization problems, show how the degree principle for the symmetric group can be computationally exploited and also propose some methods to efficiently compute in the geometric quotient.Comment: (v3) Minor revision. To appear in Math. of Operations Researc
    • …
    corecore