3,300 research outputs found

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    The Fuzzy Supersphere

    Full text link
    We introduce the fuzzy supersphere as sequence of finite-dimensional, noncommutative Z2Z_{2}-graded algebras tending in a suitable limit to a dense subalgebra of the Z2Z_{2}-graded algebra of H{\cal H}^{\infty}-functions on the (22)(2| 2)-dimensional supersphere. Noncommutative analogues of the body map (to the (fuzzy) sphere) and the super-deRham complex are introduced. In particular we reproduce the equality of the super-deRham cohomology of the supersphere and the ordinary deRham cohomology of its body on the "fuzzy level".Comment: 33 pages, LaTeX, some typos correcte

    Supersymmetric quantum theory and non-commutative geometry

    Full text link
    Classical differential geometry can be encoded in spectral data, such as Connes' spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes' non-commutative spin geometry encompassing non-commutative Riemannian, symplectic, complex-Hermitian and (Hyper-)Kaehler geometry. A general framework for non-commutative geometry is developed from the point of view of supersymmetry and illustrated in terms of examples. In particular, the non-commutative torus and the non-commutative 3-sphere are studied in some detail.Comment: 77 pages, PlainTeX, no figures; present paper is a significantly extended version of the second half of hep-th/9612205. Assumptions in Sect. 2.2.5 clarified; final version to appear in Commun.Math.Phy

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kMFk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Symmetry, Gravity and Noncommutativity

    Get PDF
    We review some aspects of the implementation of spacetime symmetries in noncommutative field theories, emphasizing their origin in string theory and how they may be used to construct theories of gravitation. The geometry of canonical noncommutative gauge transformations is analysed in detail and it is shown how noncommutative Yang-Mills theory can be related to a gravity theory. The construction of twisted spacetime symmetries and their role in constructing a noncommutative extension of general relativity is described. We also analyse certain generic features of noncommutative gauge theories on D-branes in curved spaces, treating several explicit examples of superstring backgrounds.Comment: 52 pages; Invited review article to be published in Classical and Quantum Gravity; v2: references adde

    Non Commutative Differential Geometry, and the Matrix Representations of Generalised Algebras

    Full text link
    The underlying algebra for a noncommutative geometry is taken to be a matrix algebra, and the set of derivatives the adjoint of a subset of traceless matrices. This is sufficient to calculate the dual 1-forms, and show that the space of 1-forms is a free module over the algebra of matrices. The concept of a generalised algebra is defined and it is shown that this is required in order for the space of 2-forms to exist. The exterior derivative is generalised for higher order forms and these are also shown to be free modules over the matrix algebra. Examples of mappings that preserve the differential structure are given. Also given are four examples of matrix generalised algebras, and the corresponding noncommutative geometries, including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a qq-deformed algebra.Comment: 16 pages Latex, No figures. Accepted for publication: Journal of Physics and Geometry, March 199

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde
    corecore