59 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Deep Representation Learning with Limited Data for Biomedical Image Synthesis, Segmentation, and Detection

    Get PDF
    Biomedical imaging requires accurate expert annotation and interpretation that can aid medical staff and clinicians in automating differential diagnosis and solving underlying health conditions. With the advent of Deep learning, it has become a standard for reaching expert-level performance in non-invasive biomedical imaging tasks by training with large image datasets. However, with the need for large publicly available datasets, training a deep learning model to learn intrinsic representations becomes harder. Representation learning with limited data has introduced new learning techniques, such as Generative Adversarial Networks, Semi-supervised Learning, and Self-supervised Learning, that can be applied to various biomedical applications. For example, ophthalmologists use color funduscopy (CF) and fluorescein angiography (FA) to diagnose retinal degenerative diseases. However, fluorescein angiography requires injecting a dye, which can create adverse reactions in the patients. So, to alleviate this, a non-invasive technique needs to be developed that can translate fluorescein angiography from fundus images. Similarly, color funduscopy and optical coherence tomography (OCT) are also utilized to semantically segment the vasculature and fluid build-up in spatial and volumetric retinal imaging, which can help with the future prognosis of diseases. Although many automated techniques have been proposed for medical image segmentation, the main drawback is the model's precision in pixel-wise predictions. Another critical challenge in the biomedical imaging field is accurately segmenting and quantifying dynamic behaviors of calcium signals in cells. Calcium imaging is a widely utilized approach to studying subcellular calcium activity and cell function; however, large datasets have yielded a profound need for fast, accurate, and standardized analyses of calcium signals. For example, image sequences from calcium signals in colonic pacemaker cells ICC (Interstitial cells of Cajal) suffer from motion artifacts and high periodic and sensor noise, making it difficult to accurately segment and quantify calcium signal events. Moreover, it is time-consuming and tedious to annotate such a large volume of calcium image stacks or videos and extract their associated spatiotemporal maps. To address these problems, we propose various deep representation learning architectures that utilize limited labels and annotations to address the critical challenges in these biomedical applications. To this end, we detail our proposed semi-supervised, generative adversarial networks and transformer-based architectures for individual learning tasks such as retinal image-to-image translation, vessel and fluid segmentation from fundus and OCT images, breast micro-mass segmentation, and sub-cellular calcium events tracking from videos and spatiotemporal map quantification. We also illustrate two multi-modal multi-task learning frameworks with applications that can be extended to other domains of biomedical applications. The main idea is to incorporate each of these as individual modules to our proposed multi-modal frameworks to solve the existing challenges with 1) Fluorescein angiography synthesis, 2) Retinal vessel and fluid segmentation, 3) Breast micro-mass segmentation, and 4) Dynamic quantification of calcium imaging datasets

    Pixel-level semantic understanding of ophthalmic images and beyond

    Get PDF
    Computer-assisted semantic image understanding constitutes the substrate of applications that range from biomarker detection to intraoperative guidance or street scene understanding for self-driving systems. This PhD thesis is on the development of deep learning-based, pixel-level, semantic segmentation methods for medical and natural images. For vessel segmentation in OCT-A, a method comprising iterative refinement of the extracted vessel maps and an auxiliary loss function that penalizes structural inaccuracies, is proposed and tested on data captured from real clinical conditions comprising various pathological cases. Ultimately, the presented method enables the extraction of a detailed vessel map of the retina with potential applications to diagnostics or intraoperative localization. Furthermore, for scene segmentation in cataract surgery, the major challenge of class imbalance is identified among several factors. Subsequently, a method addressing it is proposed, achieving state-of-the-art performance on a challenging public dataset. Accurate semantic segmentation in this domain can be used to monitor interactions between tools and anatomical parts for intraoperative guidance and safety. Finally, this thesis proposes a novel contrastive learning framework for supervised semantic segmentation, that aims to improve the discriminative power of features in deep neural networks. The proposed approach leverages contrastive loss function applied both at multiple model layers and across them. Importantly, the proposed framework is easy to combine with various model architectures and is experimentally shown to significantly improve performance on both natural and medical domain

    Learning the Retinal Anatomy From Scarce Annotated Data Using Self-Supervised Multimodal Reconstruction

    Get PDF
    [Abstract] Deep learning is becoming the reference paradigm for approaching many computer vision problems. Nevertheless, the training of deep neural networks typically requires a significantly large amount of annotated data, which is not always available. A proven approach to alleviate the scarcity of annotated data is transfer learning. However, in practice, the use of this technique typically relies on the availability of additional annotations, either from the same or natural domain. We propose a novel alternative that allows to apply transfer learning from unlabelled data of the same domain, which consists in the use of a multimodal reconstruction task. A neural network trained to generate one image modality from another must learn relevant patterns from the images to successfully solve the task. These learned patterns can then be used to solve additional tasks in the same domain, reducing the necessity of a large amount of annotated data. In this work, we apply the described idea to the localization and segmentation of the most important anatomical structures of the eye fundus in retinography. The objective is to reduce the amount of annotated data that is required to solve the different tasks using deep neural networks. For that purpose, a neural network is pre-trained using the self-supervised multimodal reconstruction of fluorescein angiography from retinography. Then, the network is fine-tuned on the different target tasks performed on the retinography. The obtained results demonstrate that the proposed self-supervised transfer learning strategy leads to state-of-the-art performance in all the studied tasks with a significant reduction of the required annotations.This work is supported by Instituto de Salud Carlos III, Government of Spain, and the European Regional Development Fund (ERDF) of the European Union (EU) through the DTS18/00136 research project, and by Ministerio de Economía, Industria y Competitividad, Government of Spain, through the DPI2015-69948-R research project. The authors of this work also receive financial support from the ERDF and Xunta de Galicia (Spain) through Grupo de Referencia Competitiva, ref. ED431C 2016-047, and from the European Social Fund (ESF) of the EU and Xunta de Galicia (Spain) through the predoctoral grant contract ref. ED481A-2017/328. CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia (Spain) , through the ERDF (80%) and Secretaría Xeral de Universidades (20%)Xunta de Galicia; ED431C 2016-047Xunta de Galicia ; ED481A-2017/328Xunta de Galicia; ED431G 2019/0

    Generalized Zero Shot Learning For Medical Image Classification

    Full text link
    In many real world medical image classification settings we do not have access to samples of all possible disease classes, while a robust system is expected to give high performance in recognizing novel test data. We propose a generalized zero shot learning (GZSL) method that uses self supervised learning (SSL) for: 1) selecting anchor vectors of different disease classes; and 2) training a feature generator. Our approach does not require class attribute vectors which are available for natural images but not for medical images. SSL ensures that the anchor vectors are representative of each class. SSL is also used to generate synthetic features of unseen classes. Using a simpler architecture, our method matches a state of the art SSL based GZSL method for natural images and outperforms all methods for medical images. Our method is adaptable enough to accommodate class attribute vectors when they are available for natural images
    corecore