80,792 research outputs found

    Representation Independent Analytics Over Structured Data

    Full text link
    Database analytics algorithms leverage quantifiable structural properties of the data to predict interesting concepts and relationships. The same information, however, can be represented using many different structures and the structural properties observed over particular representations do not necessarily hold for alternative structures. Thus, there is no guarantee that current database analytics algorithms will still provide the correct insights, no matter what structures are chosen to organize the database. Because these algorithms tend to be highly effective over some choices of structure, such as that of the databases used to validate them, but not so effective with others, database analytics has largely remained the province of experts who can find the desired forms for these algorithms. We argue that in order to make database analytics usable, we should use or develop algorithms that are effective over a wide range of choices of structural organizations. We introduce the notion of representation independence, study its fundamental properties for a wide range of data analytics algorithms, and empirically analyze the amount of representation independence of some popular database analytics algorithms. Our results indicate that most algorithms are not generally representation independent and find the characteristics of more representation independent heuristics under certain representational shifts

    Compact representation of one-particle wavefunctions and scalar fields obtained from electronic-structure calculations

    Full text link
    We present a code-independent compact representation of one-electron wavefunctions and other volumetric data (electron density, electrostatic potential, etc.) produced by electronic-structure calculations. The compactness of the representation insures minimization of digital storage requirements for the computational data, while the code-independence makes the data ready for "big data" analytics. Our approach allows to minimize differences between original and the new representation, and is in principle information-lossless. The procedure for obtaining the wavefunction representation is closely related to construction of natural atomic orbitals, and benefits from the localization of Wannier functions. Thus, our approach fits perfectly any infrastructure providing a code-independent tool set for electronic-structure data analysis

    parallelMCMCcombine: An R Package for Bayesian Methods for Big Data and Analytics

    Full text link
    Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for large data sets that are only large due to large sample sizes; these methods partition big data sets into subsets, and perform independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here, we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package. The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for their specific applications, and will assist future progress in this rapidly developing field.Comment: for published version see: http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0108425&representation=PD

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Large High Resolution Displays for Co-Located Collaborative Intelligence Analysis

    Get PDF
    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the spatial strategies of users partitioned by tool type used (document- or entity-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we recommend design guidelines for building co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays
    • …
    corecore