2 research outputs found

    Transmission line inspection using suspended robot: Cost effective analysis and operational routing identification

    Get PDF
    High voltage transmission lines form a crucial part of the energy infrastructure of a country. Effective maintenance is required to maintain its reliability and reduce the probability of the occurrence of the outage. Conventionally, the routine inspection of the transmission line was conducted by linemen with the assistance of hot stick and helicopter, which is considered dangerous, time-consuming, and expensive. In this thesis, we focus on the initial study of seeking the state of the art robotics technology to by largely replace human beings in transmission line inspection. The existing robotics technologies that are interested by utility companies, as well as the background information of transmission system, are first briefly reviewed. The motivation and objective of the thesis are given. Then, a cost model for using a suspended robot in transmission line inspection following a heuristic routing strategy that guides the motion of the ground support team is introduced. Numerical case study considering various terrain characteristics is implemented to demonstrate the cost related performance of the inspection task using the suspended robot. After that, a revised A-Star routing algorithm is derived to identify the travel path of the ground team to reduce the travel time and distance to further improve the cost-effectiveness of using the suspended robot in transmission line inspection. A true segment of transmission line in Missouri (MO) is used in case study to illustrate the effectiveness of the derived routing algorithm. Finally, the conclusion of the thesis is drawn, and the future work is discussed --Abstract, page iii

    Reporting on a large ocean inlet crossing live transmission line inspection performed by linescout technology

    No full text
    corecore