434 research outputs found

    On the complexity of range searching among curves

    Full text link
    Modern tracking technology has made the collection of large numbers of densely sampled trajectories of moving objects widely available. We consider a fundamental problem encountered when analysing such data: Given nn polygonal curves SS in Rd\mathbb{R}^d, preprocess SS into a data structure that answers queries with a query curve qq and radius ρ\rho for the curves of SS that have \Frechet distance at most ρ\rho to qq. We initiate a comprehensive analysis of the space/query-time trade-off for this data structuring problem. Our lower bounds imply that any data structure in the pointer model model that achieves Q(n)+O(k)Q(n) + O(k) query time, where kk is the output size, has to use roughly Ω((n/Q(n))2)\Omega\left((n/Q(n))^2\right) space in the worst case, even if queries are mere points (for the discrete \Frechet distance) or line segments (for the continuous \Frechet distance). More importantly, we show that more complex queries and input curves lead to additional logarithmic factors in the lower bound. Roughly speaking, the number of logarithmic factors added is linear in the number of edges added to the query and input curve complexity. This means that the space/query time trade-off worsens by an exponential factor of input and query complexity. This behaviour addresses an open question in the range searching literature: whether it is possible to avoid the additional logarithmic factors in the space and query time of a multilevel partition tree. We answer this question negatively. On the positive side, we show we can build data structures for the \Frechet distance by using semialgebraic range searching. Our solution for the discrete \Frechet distance is in line with the lower bound, as the number of levels in the data structure is O(t)O(t), where tt denotes the maximal number of vertices of a curve. For the continuous \Frechet distance, the number of levels increases to O(t2)O(t^2)

    Degree-Driven Design of Geometric Algorithms for Point Location, Proximity, and Volume Calculation

    Get PDF
    Correct implementation of published geometric algorithms is surprisingly difficult. Geometric algorithms are often designed for Real-RAM, a computational model that provides arbitrary precision arithmetic operations at unit cost. Actual commodity hardware provides only finite precision and may result in arithmetic errors. While the errors may seem small, if ignored, they may cause incorrect branching, which may cause an implementation to reach an undefined state, produce erroneous output, or crash. In 1999 Liotta, Preparata and Tamassia proposed that in addition to considering the resources of time and space, an algorithm designer should also consider the arithmetic precision necessary to guarantee a correct implementation. They called this design technique degree-driven algorithm design. Designers who consider the time, space, and precision for a problem up-front arrive at new solutions, gain further insight, and find simpler representations. In this thesis, I show that degree-driven design supports the development of new and robust geometric algorithms. I demonstrate this claim via several new algorithms. For n point sites on a UxU grid I consider three problems. First, I show how to compute the nearest neighbor transform in O(U^2) expected time, O(U^2) space, and double precision. Second, I show how to create a data structure in O(n log Un) expected time, O(n) expected space, and triple precision that supports O(log n) time and double precision post-office queries. Third, I show how to compute the Gabriel graph in O(n^2) time, O(n^2) space and double precision. For computing volumes of CSG models, I describe a framework that uses a minimal set of predicates that use at most five-fold precision. The framework is over 500x faster and two orders of magnitude more accurate than a Monte Carlo volume calculation algorithm.Doctor of Philosoph

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi

    Four Soviets Walk the Dog-Improved Bounds for Computing the Fr\'echet Distance

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One popular measure is the Fr\'echet distance. Since it was proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2logn)O(n^2 \log n) algorithm by Alt and Godau for computing the Fr\'echet distance remains the state of the art (here, nn denotes the number of edges on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fr\'echet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fr\'echet distance between two polygonal curves in time O(n2logn(loglogn)3/2)O(n^2 \sqrt{\log n}(\log\log n)^{3/2}) on a pointer machine and in time O(n2(loglogn)2)O(n^2(\log\log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2ε)O(n^{2-\varepsilon}), for some ε>0\varepsilon > 0. We believe that this reveals an intriguing new aspect of this well-studied problem. Finally, we show how to obtain the first subquadratic algorithm for computing the weak Fr\'echet distance on a word RAM.Comment: 34 pages, 15 figures. A preliminary version appeared in SODA 201

    A Simple Dynamization of Trapezoidal Point Location in Planar Subdivisions

    Get PDF

    Master index of Volumes 21–30

    Get PDF

    Genetic Programming to Optimise 3D Trajectories

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesTrajectory optimisation is a method of finding the optimal route connecting a start and end point. The suitability of a trajectory depends on non-intersection with any obstacles as well as predefined performance metrics. In the context of UAVs, the goal is to minimise the cost of the route, in terms of energy or time, while avoiding restricted flight zones. Artificial intelligence techniques including evolutionary computation have been applied to trajectory optimisation with various degrees of success. This thesis explores the use of genetic programming (GP) to optimise trajectories in 3D space, by encoding 3D geographic trajectories as syntax trees representing a curve. A comprehensive review of the relevant literature is presented, covering the theory and techniques of GP, as well as the principles and challenges of 3D trajectory optimisation. The main contribution of this work is the development and implementation of a novel GP algorithm using function trees to encode 3D geographical trajectories. The trajectories are validated and evaluated using a realworld dataset and multiple objectives. The results demonstrate the effectiveness of the proposed algorithm, which outperforms existing methods in terms of speed, automaticity, and robustness. Finally, insights and recommendations for future research in this area are provided, highlighting the potential for GP to be applied to other complex optimisation problems in engineering and science
    corecore