617 research outputs found

    Further results on generalized intersection searching problems: counting, reporting, and dynamization

    No full text
    In a generalized intersection searching problem, a set, SS, of colored geometric objects is to be preprocessed so that given some query object, qq, the distinct colors of the objects intersected by qq can be reported efficiently or the number of such colors can be counted efficiently. In the dynamic setting, colored objects can be inserted into or deleted from SS. These problems generalize the well-studied standard intersection searching problems and are rich in applications. Unfortunately, the techniques known for the standard problems do not yield efficient solutions for the generalized problems. Moreover, previous work on generalized problems applies only to the static reporting problems. In this paper, a uniform framework is presented to solve efficiently the counting/reporting/dynamic versions of a variety of generalized intersection searching problems, including: 1-, 2-, and 3-dimensional range searching, quadrant searching, interval intersection searching, 1- and 2-dimensional point enclosure searching, and orthogonal segment intersection searching

    On the complexity of range searching among curves

    Full text link
    Modern tracking technology has made the collection of large numbers of densely sampled trajectories of moving objects widely available. We consider a fundamental problem encountered when analysing such data: Given nn polygonal curves SS in Rd\mathbb{R}^d, preprocess SS into a data structure that answers queries with a query curve qq and radius ρ\rho for the curves of SS that have \Frechet distance at most ρ\rho to qq. We initiate a comprehensive analysis of the space/query-time trade-off for this data structuring problem. Our lower bounds imply that any data structure in the pointer model model that achieves Q(n)+O(k)Q(n) + O(k) query time, where kk is the output size, has to use roughly Ω((n/Q(n))2)\Omega\left((n/Q(n))^2\right) space in the worst case, even if queries are mere points (for the discrete \Frechet distance) or line segments (for the continuous \Frechet distance). More importantly, we show that more complex queries and input curves lead to additional logarithmic factors in the lower bound. Roughly speaking, the number of logarithmic factors added is linear in the number of edges added to the query and input curve complexity. This means that the space/query time trade-off worsens by an exponential factor of input and query complexity. This behaviour addresses an open question in the range searching literature: whether it is possible to avoid the additional logarithmic factors in the space and query time of a multilevel partition tree. We answer this question negatively. On the positive side, we show we can build data structures for the \Frechet distance by using semialgebraic range searching. Our solution for the discrete \Frechet distance is in line with the lower bound, as the number of levels in the data structure is O(t)O(t), where tt denotes the maximal number of vertices of a curve. For the continuous \Frechet distance, the number of levels increases to O(t2)O(t^2)

    Conditional Lower Bounds for Dynamic Geometric Measure Problems

    Get PDF
    We give new polynomial lower bounds for a number of dynamic measure problems in computational geometry. These lower bounds hold in the Word-RAM model, conditioned on the hardness of either 3SUM, APSP, or the Online Matrix-Vector Multiplication problem [Henzinger et al., STOC 2015]. In particular we get lower bounds in the incremental and fully-dynamic settings for counting maximal or extremal points in R^3, different variants of Klee's Measure Problem, problems related to finding the largest empty disk in a set of points, and querying the size of the i'th convex layer in a planar set of points. We also answer a question of Chan et al. [SODA 2022] by giving a conditional lower bound for dynamic approximate square set cover. While many conditional lower bounds for dynamic data structures have been proven since the seminal work of Patrascu [STOC 2010], few of them relate to computational geometry problems. This is the first paper focusing on this topic. Most problems we consider can be solved in O(n log n) time in the static case and their dynamic versions have only been approached from the perspective of improving known upper bounds. One exception to this is Klee's measure problem in R^2, for which Chan [CGTA 2010] gave an unconditional Ω(n){\Omega}(\sqrt{n}) lower bound on the worst-case update time. By a similar approach, we show that such a lower bound also holds for an important special case of Klee's measure problem in R^3 known as the Hypervolume Indicator problem, even for amortized runtime in the incremental setting.Comment: Improved presentation, improved the reduction for the Hypervolume Indicator problem and added a reduction for dynamic approximate square set cove

    Conditional Lower Bounds for Dynamic Geometric Measure Problems

    Get PDF

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234
    corecore