4,248 research outputs found

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Comparing Human and Machine Errors in Conversational Speech Transcription

    Full text link
    Recent work in automatic recognition of conversational telephone speech (CTS) has achieved accuracy levels comparable to human transcribers, although there is some debate how to precisely quantify human performance on this task, using the NIST 2000 CTS evaluation set. This raises the question what systematic differences, if any, may be found differentiating human from machine transcription errors. In this paper we approach this question by comparing the output of our most accurate CTS recognition system to that of a standard speech transcription vendor pipeline. We find that the most frequent substitution, deletion and insertion error types of both outputs show a high degree of overlap. The only notable exception is that the automatic recognizer tends to confuse filled pauses ("uh") and backchannel acknowledgments ("uhhuh"). Humans tend not to make this error, presumably due to the distinctive and opposing pragmatic functions attached to these words. Furthermore, we quantify the correlation between human and machine errors at the speaker level, and investigate the effect of speaker overlap between training and test data. Finally, we report on an informal "Turing test" asking humans to discriminate between automatic and human transcription error cases

    Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System

    Full text link
    In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.Comment: Accepted for Speaker Odyssey 201

    Generative Modelling for Unsupervised Score Calibration

    Full text link
    Score calibration enables automatic speaker recognizers to make cost-effective accept / reject decisions. Traditional calibration requires supervised data, which is an expensive resource. We propose a 2-component GMM for unsupervised calibration and demonstrate good performance relative to a supervised baseline on NIST SRE'10 and SRE'12. A Bayesian analysis demonstrates that the uncertainty associated with the unsupervised calibration parameter estimates is surprisingly small.Comment: Accepted for ICASSP 201
    corecore