1,048 research outputs found

    July-September 2009

    Get PDF

    Research and Creative Activity, July 1, 2020-June 30, 2021: Major Sponsored Programs and Faculty Accomplishments in Research and Creative Activity, University of Nebraska-Lincoln

    Get PDF
    Foreword by Bob Wilhelm, Vice Chancellor for Research and Economic Development, University of Nebraska-Lincoln: This booklet highlights successes in research, scholarship and creative activity by University of Nebraska–Lincoln faculty during the fiscal year running July 1, 2020, to June 30, 2021. It lists investigators, project titles and funding sources on major grants and sponsored awards received during the year; fellowships and other recognitions and honors bestowed on our faculty; books and chapters published by faculty; performances, exhibitions and other examples of creative activity; patents and licensing agreements issued; National Science Foundation I-CORPS teams; and peer-reviewed journal articles and conference presentations. In recognition of the important role faculty have in the undergraduate experience at Nebraska, this booklet notes the students and mentors participating in the Undergraduate Creative Activities and Research Experience (UCARE) and the First-Year Research Experience (FYRE) programs. While metrics cannot convey the full impact of our work, they are tangible measures of growth. A few achievements of note: • UNL achieved a record 320millionintotalresearchexpendituresinFY2020,a43Ourfacultyearned1,508sponsoredresearchawardsinFY2020.UniversitysponsoredindustryactivityalsospurredeconomicgrowthforNebraska.NebraskaInnovationCampuscreated1,948jobsstatewideandhadatotaleconomicimpactof320 million in total research expenditures in FY 2020, a 43% increase over the past decade. • Our faculty earned 1,508 sponsored research awards in FY 2020. University-sponsored industry activity also spurred economic growth for Nebraska. • Nebraska Innovation Campus created 1,948 jobs statewide and had a total economic impact of 372 million. • Industry sponsorship supported 19.2millioninresearchexpenditures.NUtechVenturesbroughtin19.2 million in research expenditures. • NUtech Ventures brought in 6.48 million in licensing income. I applaud the Nebraska Research community for its determination and commitment during a challenging year. Your hard work has made it possible for our momentum to continue growing. Our university is poised for even greater success. The Grand Challenges initiative provides a framework for developing bold ideas to solve society’s greatest issues, which is how we will have the greatest impact as an institution. Please visit research.unl.edu/grandchallenges to learn more. We’re also renewing our campus commitment to a journey of anti-racism and racial equity, which is among the most important work we’ll do. I am pleased to present this record of accomplishments. Contents Awards of 5MillionorMoreAwardsof5 Million or More Awards of 1 Million to 4,999,999Awardsof4,999,999 Awards of 250,000 to 999,99950EarlyCareerAwardsArtsandHumanitiesAwardsof999,999 50 Early Career Awards Arts and Humanities Awards of 250,000 or More Arts and Humanities Awards of 50,000to50,000 to 249,999 Arts and Humanities Awards of 5,000to5,000 to 49,999 Patents License Agreements National Science Foundation Innovation Corps Teams Creative Activity Books Recognitions and Honors Journal Articles 105 Conference Presentations UCARE and FYRE Projects Glossar

    Annual Research Report, 2009-2010

    Get PDF
    Annual report of collaborative research projects of Old Dominion University faculty and students in partnership with business, industry and governmenthttps://digitalcommons.odu.edu/or_researchreports/1001/thumbnail.jp

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    Overview of the physics potential of a future hadron collider

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    Crashworthy Code

    Get PDF
    Code crashes. Yet for decades, software failures have escaped scrutiny for tort liability. Those halcyon days are numbered: self-driving cars, delivery drones, networked medical devices, and other cyber-physical systems have rekindled interest in understanding how tort law will apply when software errors lead to loss of life or limb. Even after all this time, however, no consensus has emerged. Many feel strongly that victims should not bear financial responsibility for decisions that are entirely automated, while others fear that cyber-physical manufacturers must be shielded from crushing legal costs if we want such companies to exist at all. Some insist the existing liability regime needs no modernist cure, and that the answer for all new technologies is patience. This Article observes that no consensus is imminent as long as liability is pegged to a standard of “crashproof” code. The added prospect of cyber-physical injury has not changed the underlying complexities of software development. Imposing damages based on failure to prevent code crashes will not improve software quality, but will impede the rollout of cyber-physical systems. This Article offers two lessons from the “crashworthy” doctrine, a novel tort theory pioneered in the late 1960s in response to a rising epidemic of automobile accidents, which held automakers accountable for unsafe designs that injured occupants during car crashes. The first is that tort liability can be metered on the basis of mitigation, not just prevention. When code crashes are statistically inevitable, cyber-physical manufacturers may be held to have a duty to provide for safer code crashes, rather than no code crashes at all. Second, the crashworthy framework teaches courts to segment their evaluation of code, and make narrower findings of liability based solely on whether cyber-physical manufacturers have incorporated adequate software fault tolerance into their designs. Requiring all code to be perfect is impossible, but expecting code to be crashworthy is reasonable
    corecore