5 research outputs found

    Theroetical Analysis of Autonomic Nervous System Effects on Cardiac Elestrophysiology and its Relationship with Arrhythmic Risk

    Get PDF
    Las enfermedades cardiovasculares representan la principal causa de mortalidad y morbilidad en las sociedades industrializadas. Un porcentaje significativo de las muertes asociadas a estas enfermedades está relacionado con el desarrollo de arritmias cardíacas, siendo éstas definidas como anomalías en el funcionamiento eléctrico del corazón.Tres son los elementos principales que están involucrados en el desarrollo de las arritmias: un sustrato arritmogénico, un desencadenante y factores de modulación. El Sistema Nervioso Autónomo (SNA) es el más relevante de estos factores moduladores.El SNA está compuesto por dos ramas, simpática y parasimpática, que encierta medida actúan de forma antagónica entre sí. La posibilidad de revelar cómo el sistema nervioso simpático modula la actividad ventricular y participa en el desarrollo de arritmias, tal y como se ha observado experimentalmente, podría ser crucial para avanzar en el diseño de nuevas terapias clínicas dirigidas a prevenir o tratar estas anomalías rítmicas.Esta tesis investiga y analiza la variabilidad espacio-temporal de la repolarización ventricular humana, su modulación por el sistema nervioso simpático, los mecanismos que subyacen a incrementos notables en dicha variabilidad y la relación que existe con la generación de arritmias ventriculares. Para ello, se proponen metodología que combinan el procesado de señales ventriculares y el modelado in silico de miocitos ventriculares humanos. Los modelos in silico desarrollados incluyen descripciones teóricas acopladas de la electrofisiología, la dinámica del calcio, el estiramiento mecánico y la señalización -adrenérgica. Para tener en cuenta la variabilidad temporal(latido a latido) de la repolarización, se añade estocasticidad en las ecuaciones que definen la apertura y cierre de los canales iónicos de las principales corrientes activas durante la fase de repolarización del potencial de acción (AP), es decir, durante el retorno de la célula al estado de reposo después de una excitación. Por otro lado, para tener en cuenta la variabilidad espacial (célula a célula) de la repolarización, se construye y calibra una población de modelos representativos de diferentes características celulares utilizando para ellos datos experimentales disponibles. La investigación teórica y computacional de este estudio, combinada con el procesado de señales ventriculares tanto clínicas como experimentales, sienta las bases para futuros estudios que tengan como objetivo mejorar los métodos de estratificación del riesgo arrítmico y guiar la búsqueda de terapias antiarrítmicas más eficaces.En el Capítulo 2, se construye una población de modelos computacionales estocásticos representativos de células ventriculares humanas, los cuales se calibran experimentalmente.Estos modelos combinan la electrofisiología, la mecánica y la señalización-adrenérgica y se utizan para caracterizar de modo teórico la variabilidadespacio-temporal. La calibración de los modelos se basa en rangos experimentales de una serie de marcadores derivados del AP que describen su duración, amplitud y morfología.Mediante el uso de esta población de modelos estocásticos de AP se reproducenlas interacciones descritas experimentalmente entre un tipo particular de variabilidad temporal, asociada con las oscilaciones de baja frecuencia (LF) de la duración del AP (APD), y la variabilidad global latido a latido de la repolarización (BVR) en respuesta a un incremento de la actividad simpática. Además en este capítulo, se han estudiado los mecanismos iónicos que esán detrás de los incrementos simultáneos de ambos fenómenos y se ha demostrado que dichos mecanismos están asociados con la disminución de las corrientes rectificadora de entrada y rectificadora retardada rápida de K+ y a su vez de la corriente de Ca2+ tipo-L. Finalmente, se ha probado que niveles elevados de oscilaciones de baja frecuencia del APD y de BVR en ventrículos enfermosconducen a inestabilidades eléctricas y al desarrollo de eventos arritmogénicos.En el Capítulo 3, se investiga el retardo necesario para la manifestación de las oscilaciones LF del APD, como una forma particular de variabilidad de repolarización, en los miocitos ventriculares en respuesta a la provocación simpática. Mediante el uso de una población calibrada experimentalmente de modelos de AP ventriculares humanos, como en el Capítulo 2, se ha demostrado que esta latencia oscilatoria está asociada con la cinética lenta de fosforilación de la corriente rectificadora retardada lenta de K+ (IKs) en respuesta a la estimulación -adrenérgica. La estimulación previa de los receptores reduce sustancialmente el tiempo requerido para el desarrollo de oscilaciones de LF. Además, se ha demostrado que lapsos de tiempo cortos están íntimamente relacionados con mayores magnitudes oscilatorias del APD, medidas en elCapítulo 3, particularmente en células susceptibles de desarrollar eventos arritmogénicos en respuesta a la estimulación simpática.La calibración experimental de la población de modelos utilizados en los Capítulos 2 y 3 no garantiza que cada modelo de la población construida represente las medidas de un cardiomiocito ventricular humano individual. Es por esta razón que en el Capítulo 4 se desarrolla una metodología novedosa para construir poblaciones computacionales de modelos celulares ventriculares humanos que recapitulen más fielmente las evidencias experimentales disponibles. La metodología propuesta se basa en la formulación de representaciones estado-espacio no lineales y en el uso del filtro de Kalman (UKF) para la estimación de los parámetros y las variables de estado de un modelo AP estocástico subyacente para cada señal de potencial dada como entrada.Las pruebas realizadas sobre series de potencial sintéticas y experimentales demuestran que esta metodología permite establecer una correspondencia entre las trazas AP de entrada y los conjuntos de parámetros del modelo (conductancias de corriente iónicas) y las variables de estado (variables relacionadas con la apertura/cierre de los canales iónicos y concentraciones iónicas intracelulares). A su vez, se ha demostrado que la metodología propuesta es robusta y adecuada para la investigación de la variabilidad espacio-temporal en la repolarización ventricular humana.En el Capítulo 5 se proponen varias mejoras a la metodología desarrollada en elCapítulo 4 para estimar con mayor precisión los parámetros y las variables de estado de los modelos estocásticos de células ventriculares humanas a partir de señales individuales de AP dadas como entradas, y a su vez para reducir el tiempo de convergencia a fin de proporcionar una estimación más rápida. Las mejoras se han basado en el uso combinado del método UKF, presentado en el Capítulo 4, junto con el método Double Greedy Dimension Reduction (DGDR) con generación automática de biomarcadores.Además de estimar las conductancias de las corrientes iónicas en condiciones basales, el enfoque presentado en este capítulo también proporciona el conjunto de niveles de fosforilación inducidos por la estimulación -adrenérgica, contribuyendo así al análisis de patrones de repolarización espacio-temporal con y sin modulación autonómica.En conclusión, esta tesis presenta novedosas metodologías enfocadas hacia lacaracterización de la variabilidad espacio-temporal de la repolarización ventricular humana, el análisis de sus mecanismos subyacentes y la determinaci´ón de la relación entre aumentos en la variabilidad y el mayor riesgo de sufrir arritmias ventriculares y muerte súbita cardíaca. Se desarrollan conjuntos de modelos computacionales estocásticos celulares humanos con representación de la electrofisiología ventricular, la mecánica y la señalización -adrenérgica para analizar la variabilidad global de larepolarización, latido a latido y célula a célula, así como de un tipo particular de variabilidad en forma de oscilaciones de baja frecuencia. Para reproducir fielmente los patrones de variabilidad medidos experimentalmente de manera individual, se proponen metodologías para construir poblaciones de modelos AP ventriculares humanos donde los parámetros y las variables de estado de cada modelo se estiman a partir de una serie de potencial de entrada dada. Estos modelos personalizados abren la puerta a una investigación más robusta de las causas y consecuencias de la variabilidad espacio-temporal de la repolarización ventricular humanCardiovascular diseases represent the main cause of mortality and morbidity in industrialized societies. A significant percentage of deaths associated with these diseases is related to the generation of cardiac arrhythmias, defined as abnormalities in the electrical functioning of the heart. Three major elements are involved in the development of arrhythmias, which include an arrhythmogenic substrate, a trigger and modulating factors. The Autonomic Nervous System (ANS) is the most relevant of these modulators. The ANS is composed of two branches, sympathetic and parasympathetic, which to a certain extent act antagonistically to each other. The possibility of revealing how the sympathetic nervous system modulates the activity of the ventricles (lower heart chambers) and participates in the development of arrhythmias, as reported experimentally, could be crucial to advance in the design of new clinical therapies aimed at preventing or treating these rhythm abnormalities. This thesis investigates spatio-temporal variability of human ventricular repolarization, its modulation by the sympathetic nervous system, the mechanisms behind highly elevated variability and the relationship to the generation of ventricular arrhythmias. To that end, methodologies combining signal processing of ventricular signals and in silico modeling of human ventricular myocytes are proposed. The developed in silico models include coupled theoretical descriptions of electrophysiology, calcium dynamics, mechanical stretch and -adrenergic signaling. To account for temporal (beat-to-beat) repolarization variability, stochasticity is added into the equations defining the gating of the ion channels of the main currents active during action potential (AP) repolarization, i.e. during the return of the cell to the resting state after an excitation. To account for spatial (cell-to-cell) repolarization variability, a population of models representative of different cellular characteristics are constructed and calibrated based on available experimental data. The theoretical computational research of this study, combined with the processing of clinical and experimental ventricular signals, lays the ground for future studies aiming at improving arrhythmic risk stratification methods and at guiding the search for more efficient anti-arrhythmic therapies. In Chapter 2, a population of experimentally-calibrated stochastic human ventricular computational cell models coupling electrophysiology, mechanics and -adrenergic signaling are built to investigate spatio-temporal variability. Model calibration is based on experimental ranges of a number of AP-derived markers describing AP duration, amplitude and shape. By using the proposed population of stochastic AP models, the experimentally reported interactions between a particular type of temporal variability associated with low-frequency (LF) oscillations of AP duration (APD) and overall beat-to-beat variability of repolarization (BVR) in response to enhanced sympathetic activity are reproduced. Ionic mechanisms behind correlated increments in both phenomena are investigated and found to be related to downregulation of the inward and rapid delayed rectifier K+ currents and the L-type Ca2+ current. Concomitantly elevated levels of LF oscillations of APD and BVR in diseased ventricles are shown to lead to electrical instabilities and arrhythmogenic events. In Chapter 3, the time delay for manifestation of LF oscillations of APD, as a particular form of repolarization variability, is investigated in ventricular myocytes in response to sympathetic provocation. By using an experimentally-calibrated population of human ventricular AP models, as in Chapter 2, this oscillatory latency is demonstrated to be associated with the slow phosphorylation kinetics of the slow delayed rectifier K+ current IKs in response to -adrenergic stimulation. Prior stimulation of -adrenoceptors substantially reduces the time required for the development of LF oscillations. In addition, short time lapses are shown to be related to large APD oscillatory magnitudes, as measured in Chapter 2, particularly in cells susceptible to develop arrhythmogenic events in response to sympathetic stimulation. The experimental calibration of the population of models used in Chapter 2 and Chapter 3, despite ensuring that simulated population measurements lie within experimental limits, does not guarantee that each model in the constructed population represents the experimental measurements of an individual human ventricular cardiomyocyte. It is for that reason that in Chapter 4 a novel methodology is developed to construct computational populations of human ventricular cell models that more faithfully recapitulate individual available experimental evidences. The proposed methodology is based on the formulation of nonlinear state-space representations and the use of the Unscented Kalman Filter (UKF) to estimate parameters and state variables of an underlying stochastic AP model given any input voltage trace. Tests performed over synthetic and experimental voltage traces demonstrate that this methodology successfully renders a one-to-one match between input AP traces and sets of model parameters (ionic current conductances) and state variables (ionic gating variables and intracellular concentrations). The proposed methodology is shown to be robust for investigation of spatio-temporal variability in human ventricular repolarization. Chapter 5 improves the methodology developed in Chapter 4 to more accurately estimate parameters and state variables of stochastic human ventricular cell models from individual input voltage traces and to reduce the converge time so as to provide faster estimation. The improvements are based on the combined use of the UKF method of Chapter 4 together with Double Greedy Dimension Reduction (DGDR) method with automatic generation of biomarkers. Additionally, on top of estimating ionic current conductances at baseline conditions, the approach presented in this chapter also provides a set of -adrenergic-induced phosphorylation levels, thus contributing to the analysis of spatio-temporal repolarization patterns with and without autonomic modulation. In conclusion, this thesis presents novel methodologies for characterization of spatio-temporal variability of human ventricular repolarization, for dissection of its underlying mechanisms and for ascertainment of the relationship between elevated variability and increased risk for ventricular arrhythmias and sudden cardiac death. Sets of stochastic human computational cell models with representation of ventricular electrophysiology, mechanics and -adrenergic signaling are developed and used to analyze overall beat-to-beat and cell-to-cell repolarization variability as well as a particular type of variability in the form of LF oscillations. To faithfully reproduce experimentally measured variability patterns in a one-to-one manner, methodologies are proposed to construct populations of human ventricular AP models where the parameters and state variables of a model are estimated from a given input voltage trace. These personalized models open the door to more robust investigation of the causes and consequences of spatio-temporal variability of human ventricular repolarization.<br /

    Drugs, QTc prolongation and sudden cardiac death

    Get PDF
    __Abstract__ The term sudden cardiac death pertains to an unexpected death from cardiac causes within a short time period and has been described throughout history. The ancient Egyptians inscribed on the tomb of a nobleman some 4500 years ago that he had died suddenly and without apparent cause. Another early case of sudden death was Phidippides, the young Greek messenger, who collapsed and died after he ran 26.2 miles from Marathon to Athens to deliver the news of the Greek victory over the Persians in 460 BC. It has been hypothesised that Hippocrates in his writings provided the first medical description (approximately 400 BC) of sudden cardiac death: "Those who are subject to frequent and severe fainting attacks without obvious cause die suddenly". Sudden (cardiac) death was originally ascribed to supernatural causes. In the bible Ananias and his wife Sapphira were punished for their deceit by sudden death "WhenAnanias heard this, he fell down and died. And great fear seized all who heard what had happened. About three hours later his wife came in, not knowing what had happened. Peter asked her, "Tell me, is this the price you and Ananias got for the land?" "Yes," she said, "that is the price." Peter said to her, "How could you agree to test the Spirit of the Lord? Look! 1he feet of the men who buried your husband are at the door, and they will carry you out also. " At that moment she fell down at his feet and died. 1hen the young men came in and, .finding her dead, carried her out and buried her beside her husband. (ACTS 4:32-5:II). Even when medical science advanced to a stage where autopsies became available many sudden cardiac deaths remained unexplained. Only recently, it has been hypothesized that Napoleon might have died due cardiac arrhythmias induced by drugs the Emperor was using at that time

    Therapeutic Strategies for the Treatment of Atrial Fibrillation:New Insights from Biophysical Modeling and Signal Processing

    Get PDF
    Atrial fibrillation is the most common cardiac rhythm disorder encountered in clinical practice, often leading to severe complications such as heart failure and stroke. This arrhythmia, increasing in prevalence with age, already affects several millions of people in the United States, with a rising occurrence of the disease during the past two decades. In spite of these warning signals, atrial fibrillation is still difficult to treat, because basic mechanisms of the arrhythmia remain poorly understood and current treatments are therefore based on empirical considerations. The future of therapeutic solutions for the treatment of complex diseases such as atrial fibrillation relies on a strong collaboration between medicine, biology and engineering. Only through such synergies will efficient monitoring, diagnostic and therapeutic devices be created. The goal of the present thesis was to adopt this multidisciplinary approach, and develop new strategies for atrial fibrillation therapy using both computer modeling and advanced signal processing methods. Biophysical modeling is a practical and ethically interesting approach to develop innovative therapies, since physiological phenomena of interest are reproduced numerically and the resulting framework is then used with full repeatability to explore mechanisms and test treatments. A model of the human atria, that was developed in our group, was used to simulate atrial fibrillation and perform mechanistic and therapeutic investigations. In a first study, computer simulations were used to observe spontaneous terminations of two models of atrial fibrillation corresponding to different developmental stages of the arrhythmia. Dynamical parameters were observed during several seconds prior to termination in order to describe the underlying mechanisms of this natural phenomenon, showing that different levels of fibrillation complexity led to different termination patterns. The mechanisms highlighted by the study were successfully compared to those described in the existing literature and could suggest interesting guidelines to better investigate spontaneous terminations of atrial fibrillation in experimental and clinical settings. Moreover, a more precise understanding of the natural extinction of atrial fibrillation will certainly be crucial for future therapy developments. The potential of rapid low-energy pacing for artificially terminating atrial fibrillation was also thoroughly investigated. First, the possibility to entrain and thereby control fibrillating atrial activity by rapid pacing was studied in a systematic manner. Results showed that optimized pacing parameters provided sustained entrainment of electrical activity, although total extinction of atrial fibrillation was never observed. The ability to control atrial activity by pacing was also shown to depend on specific properties of the atrial tissue, showing that patients with atrial fibrillation may not all respond in the same way to pacing treatments. Finally, this study suggested different guidelines for the development of pace-termination algorithms for atrial fibrillation. Based on these results, a new pacing sequence for the automatic termination of atrial fibrillation was designed, implemented and tested in the biophysical model. The pacing protocol comprised two distinct phases involving a succession of rapid and slow pacing stimulations. The results of the tests suggest that this pacing scheme could represent an alternative to current treatments of atrial fibrillation, and could easily be implemented in patients who already have an indication for pacing. Advanced signal processing techniques were also used in this thesis to analyze real cardiac signals and develop new diagnosis tools. Multivariate spectral analysis and complexity measures were combined to develop an automatic method able to describe subtle changes in atrial fibrillation organization as measured by non-invasive ECG recordings. Accurate discrimination between persistent and permanent AF was shown possible, and potential applications in clinical settings to optimize patient management were demonstrated. Collectively, the results of this thesis show that major public health issues such as atrial fibrillation can strongly benefit from the contribution of biomedical engineering. The modeling and signal processing approaches used in the present dissertation proved effective and promising, and synergies between clinicians and scientists will definitely be at the basis of future therapies

    Stories from different worlds in the universe of complex systems: A journey through microstructural dynamics and emergent behaviours in the human heart and financial markets

    Get PDF
    A physical system is said to be complex if it exhibits unpredictable structures, patterns or regularities emerging from microstructural dynamics involving a large number of components. The study of complex systems, known as complexity science, is maturing into an independent and multidisciplinary area of research seeking to understand microscopic interactions and macroscopic emergence across a broad spectrum systems, such as the human brain and the economy, by combining specific modelling techniques, data analytics, statistics and computer simulations. In this dissertation we examine two different complex systems, the human heart and financial markets, and present various research projects addressing specific problems in these areas. Cardiac fibrillation is a diffuse pathology in which the periodic planar electrical conduction across the cardiac tissue is disrupted and replaced by fast and disorganised electrical waves. In spite of a century-long history of research, numerous debates and disputes on the mechanisms of cardiac fibrillation are still unresolved while the outcomes of clinical treatments remain far from satisfactory. In this dissertation we use cellular automata and mean-field models to qualitatively replicate the onset and maintenance of cardiac fibrillation from the interactions among neighboring cells and the underlying topology of the cardiac tissue. We use these models to study the transition from paroxysmal to persistent atrial fibrillation, the mechanisms through which the gap-junction enhancer drug Rotigaptide terminates cardiac fibrillation and how focal and circuital drivers of fibrillation may co-exist as projections of transmural electrical activities. Financial markets are hubs in which heterogeneous participants, such as humans and algorithms, adopt different strategic behaviors to exchange financial assets. In recent decades the widespread adoption of algorithmic trading, the electronification of financial transactions, the increased competition among trading venues and the use of sophisticated financial instruments drove the transformation of financial markets into a global and interconnected complex system. In this thesis we introduce agent-based and state-space models to describe specific microstructural dynamics in the stock and foreign exchange markets. We use these models to replicate the emergence of cross-currency correlations from the interactions between heterogeneous participants in the currency market and to disentangle the relationships between price fluctuations, market liquidity and demand/supply imbalances in the stock market.Open Acces
    corecore