79 research outputs found

    UNCONDITIONAL SECURITY BY THE LAWS OF CLASSICAL PHYSICS

    Get PDF
    There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop - i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol - for secure key distribution leads to information theoretic security levels superior to those of today's quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical)

    Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-law-Johnson-noise scheme

    Get PDF
    Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law–Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.Laszlo B. Kish, Derek Abbott, Claes G. Granqvis

    Errors and Their Mitigation at the Kirchhoff-Law-Johnson-Noise Secure Key Exchange

    Get PDF

    Error Elimination in the KLJN Secure Key Exchange and Vehicular Applications

    Get PDF
    The Kirchhoff-law-Johnson-noise (KLJN) system is a classical physical secure key exchange scheme based on the Kirchhoff’s circuit loop law and the fluctuation-dissipation theorem of statistical physics. This dissertation contains two main studies related to this scheme: bit error analysis and removal, and applications in vehicular communication systems. The thesis starts with a presentation of some of the challenges faced by modern communications. It also includes a description of the working principle of the KLJN system and the motivation upon which this dissertation is built. Then, a study of the errors in this scheme is carried out. In the first part, the types of errors due to statistical inaccuracies in the voltage-based and current-based measurement modes are classified and analyzed. In both measurement modes and for all types of errors, at fixed bandwidth, the error probabilities decay exponentially versus the duration of the bit sharing period. In the second part, an error removal method is proposed to improve the fidelity of the system. This method is based on the combination of the voltage-based and current-based schemes and it drastically reduces the error probabilities. The second topic of study in the thesis explores a potential practical application for the KLJN key exchange scheme. First, we present a vehicular communication network architecture with unconditionally secure KLJN keys. Secondly, a new solution for secure KLJN key donation to vehicles is proposed and an upper limit for the lifetime of this key is given. A summary of the work is given in the last section and the main results of the research are discussed. These contributions include: closed-form expressions for the error probabilities in the KLJN system, error removal methods without the need of implementing any error correcting technique, and a new potential vehicular application for the KLJN scheme. Some of the future research initiatives related to these topics are discussed
    • …
    corecore