3,872 research outputs found

    MDI-QKD: Continuous- versus discrete-variables at metropolitan distances

    Get PDF
    In a comment, Xu, Curty, Qi, Qian, and Lo claimed that discrete-variable (DV) measurement device independent (MDI) quantum key distribution (QKD) would compete with its continuous-variable (CV) counterpart at metropolitan distances. Actually, Xu et al.'s analysis supports exactly the opposite by showing that the experimental rate of our CV protocol (achieved with practical room-temperature devices) remains one order of magnitude higher than their purely-numerical and over-optimistic extrapolation for qubits, based on nearly-ideal parameters and cryogenic detectors (unsuitable solutions for a realistic metropolitan network, which is expected to run on cheap room-temperature devices, potentially even mobile). The experimental rate of our protocol (expressed as bits per relay use) is confirmed to be two-three orders of magnitude higher than the rate of any realistic simulation of practical DV-MDI-QKD over short-medium distances. Of course this does not mean that DV-MDI-QKD networks should not be investigated or built, but increasing their rate is a non-trivial practical problem clearly beyond the analysis of Xu et al. Finally, in order to clarify the facts, we also refute a series of incorrect arguments against CV-MDI-QKD and, more generally, CV-QKD, which were made by Xu et al. with the goal of supporting their thesis.Comment: Updated reply to Xu, Curty, Qi, Qian and Lo (arXiv:1506.04819), including a point-to-point rebuttal of their new "Appendix E: Addendum

    Philosophy Enters the Optics Laboratory: Bell's Theorem and its First Experimental Tests (1965-1982)

    Full text link
    This paper deals with the ways that the issue of completing quantum mechanics was brought into laboratories and became a topic in mainstream quantum optics. It focuses on the period between 1965, when Bell published what now we call Bell's theorem, and 1982, when Aspect published the results of his experiments. I argue that what was considered good physics after Aspect's experiments was once considered by many a philosophical matter instead of a scientific one, and that the path from philosophy to physics required a change in the physics community's attitude about the status of the foundations of quantum mechanics.Comment: 57 pages, accepted by Studies in History and Philosophy of Modern Physic

    Historical and interpretative aspects of quantum mechanics: a physicists' naive approach

    Get PDF
    Many theoretical predictions derived from quantum mechanics have been confirmed experimentally during the last 80 years. However, interpretative aspects have long been subject to debate. Among them, the question of the existence of hidden variables is still open. We review these questions, paying special attention to historical aspects, and argue that one may definitively exclude local realism on the basis of present experimental outcomes. Other interpretations of Quantum Mechanics are nevertheless not excluded.Comment: 30 page

    Casimir forces and non-Newtonian gravitation

    Get PDF
    The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false signals. We also propose a geometry-independent parameterization of all data in terms of the measurement of the constant c. Any Casimir force measurement should lead, once all corrections are taken into account, to a determination of the constant c which, in order to assess the accuracy of the measurement, can be compared with its more precise value known through microscopic measurements. Although the last decade of experiments has resulted in solid demonstrations of the Casimir force, the situation is not conclusive with respect to being able to discover new physics. Future experiments and novel phenomenological analysis will be necessary to discover non-Newtonian forces or to push the window for their possible existence into regions of the parameter space which theoretically appear unnatural.Comment: Also available at http://www.iop.org/EJ/abstract/1367-2630/8/10/23
    corecore