142,547 research outputs found

    Automating the construction of replicated objects in a cluster of workstations

    Full text link
    This paper describes a tool that mimics the design of the remote procedure call (RPC) system to support the building of replicated objects in a cluster of workstations (COW). The tool includes an interface definition language for describing a replica group, a language preprocessor and a runtime library system. The paper also presents one example and discusses some performance issues for replicated objects. <br /

    Designing a commutative replicated data type

    Get PDF
    Commuting operations greatly simplify consistency in distributed systems. This paper focuses on designing for commutativity, a topic neglected previously. We show that the replicas of \emph{any} data type for which concurrent operations commute converges to a correct value, under some simple and standard assumptions. We also show that such a data type supports transactions with very low cost. We identify a number of approaches and techniques to ensure commutativity. We re-use some existing ideas (non-destructive updates coupled with invariant identification), but propose a much more efficient implementation. Furthermore, we propose a new technique, background consensus. We illustrate these ideas with a shared edit buffer data type

    Achieving Robust Self-Management for Large-Scale Distributed Applications

    Get PDF
    Autonomic managers are the main architectural building blocks for constructing self-management capabilities of computing systems and applications. One of the major challenges in developing self-managing applications is robustness of management elements which form autonomic managers. We believe that transparent handling of the effects of resource churn (joins/leaves/failures) on management should be an essential feature of a platform for self-managing large-scale dynamic distributed applications, because it facilitates the development of robust autonomic managers and hence improves robustness of self-managing applications. This feature can be achieved by providing a robust management element abstraction that hides churn from the programmer. In this paper, we present a generic approach to achieve robust services that is based on finite state machine replication with dynamic reconfiguration of replica sets. We contribute a decentralized algorithm that maintains the set of nodes hosting service replicas in the presence of churn. We use this approach to implement robust management elements as robust services that can operate despite of churn. Our proposed decentralized algorithm uses peer-to-peer replica placement schemes to automate replicated state machine migration in order to tolerate churn. Our algorithm exploits lookup and failure detection facilities of a structured overlay network for managing the set of active replicas. Using the proposed approach, we can achieve a long running and highly available service, without human intervention, in the presence of resource churn. In order to validate and evaluate our approach, we have implemented a prototype that includes the proposed algorithm

    Linearizable Replicated State Machines With Lattice Agreement

    Get PDF
    This paper studies the lattice agreement problem in asynchronous systems and explores its application to building a linearizable replicated state machine (RSM). First, we propose an algorithm to solve the lattice agreement problem in O(log f) asynchronous rounds, where f is the number of crash failures that the system can tolerate. This is an exponential improvement over the previous best upper bound of O(f). Second, Faleiro et al have shown in [Faleiro et al. PODC, 2012] that combination of conflict-free data types and lattice agreement protocols can be applied to implement a linearizable RSM. They give a Paxos style lattice agreement protocol, which can be adapted to implement a linearizable RSM and guarantee that a command by a client can be learned in at most O(n) message delays, where n is the number of proposers. Later, Xiong et al in [Xiong et al. DISC, 2018] gave a lattice agreement protocol which improves the O(n) message delay guarantee to O(f). However, neither of the protocols is practical for building a linearizable RSM. Thus, in the second part of the paper, we first give an improved protocol based on the one proposed by Xiong et al. Then, we implement a simple linearizable RSM using our improved protocol and compare our implementation with an open source Java implementation of Paxos. Results show that better performance can be obtained by using lattice agreement based protocols to implement a linearizable RSM compared to traditional consensus based protocols

    Deceit: A flexible distributed file system

    Get PDF
    Deceit, a distributed file system (DFS) being developed at Cornell, focuses on flexible file semantics in relation to efficiency, scalability, and reliability. Deceit servers are interchangeable and collectively provide the illusion of a single, large server machine to any clients of the Deceit service. Non-volatile replicas of each file are stored on a subset of the file servers. The user is able to set parameters on a file to achieve different levels of availability, performance, and one-copy serializability. Deceit also supports a file version control mechanism. In contrast with many recent DFS efforts, Deceit can behave like a plain Sun Network File System (NFS) server and can be used by any NFS client without modifying any client software. The current Deceit prototype uses the ISIS Distributed Programming Environment for all communication and process group management, an approach that reduces system complexity and increases system robustness

    Distributed and parallel Ada and the Ada 9X recommendations

    Get PDF
    Recently, the DoD has sponsored work towards a new version of Ada, intended to support the construction of distributed systems. The revised version, often called Ada 9X, will become the new standard sometimes in the 1990s. It is intended that Ada 9X should provide language features giving limited support for distributed system construction. The requirements for such features are given. Many of the most advanced computer applications involve embedded systems that are comprised of parallel processors or networks of distributed computers. If Ada is to become the widely adopted language envisioned by many, it is essential that suitable compilers and tools be available to facilitate the creation of distributed and parallel Ada programs for these applications. The major languages issues impacting distributed and parallel programming are reviewed, and some principles upon which distributed/parallel language systems should be built are suggested. Based upon these, alternative language concepts for distributed/parallel programming are analyzed

    Optimum Header Positioning in Successive Interference Cancellation (SIC) based Aloha

    Full text link
    Random Access MAC protocols are simple and effective when the nature of the traffic is unpredictable and sporadic. In the following paper, investigations on the new Enhanced Contention Resolution ALOHA (ECRA) are presented, where some new aspects of the protocol are investigated. Mathematical derivation and numerical evaluation of the symbol interference probability after SIC are here provided. Results of the optimum header positioning which is found to be in the beginning and in the end of the packets, are exploited for the evaluation of ECRA throughput and Packet Error Rate (PER) under imperfect knowledge of packets positions. Remarkable gains in the maximum throughput are observed for ECRA w.r.t. Contention Resolution ALOHA (CRA) under this assumption.Comment: Accepted for publication in the IEEE International Conference on Communications (ICC) 201
    corecore