1,521 research outputs found

    Composite CDMA - A statistical mechanics analysis

    Get PDF
    Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission - submitted to J.Stat.Mec

    Randomly Spread CDMA: Asymptotics via Statistical Physics

    Full text link
    This paper studies randomly spread code-division multiple access (CDMA) and multiuser detection in the large-system limit using the replica method developed in statistical physics. Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the form of the posterior mean estimator is applied before single-user decoding. The generic detector can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or the individually optimal detector, and others. It is found that the detection output for each user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol, converges as the number of users go to infinity to a deterministic function of a "hidden" Gaussian statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers a degradation due to the multiple-access interference. The uncoded error performance (e.g., symbol-error-rate) and the mutual information can then be fully characterized using the degradation factor, also known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point equations identified in this paper. Based on a general linear vector channel model, the results are also applicable to MIMO channels such as in multiantenna systems.Comment: To be published in IEEE Transactions on Information Theor

    Large-System Analysis of Joint Channel and Data Estimation for MIMO DS-CDMA Systems

    Full text link
    This paper presents a large-system analysis of the performance of joint channel estimation, multiuser detection, and per-user decoding (CE-MUDD) for randomly-spread multiple-input multiple-output (MIMO) direct-sequence code-division multiple-access (DS-CDMA) systems. A suboptimal receiver based on successive decoding in conjunction with linear minimum mean-squared error (LMMSE) channel estimation is investigated. The replica method, developed in statistical mechanics, is used to evaluate the performance in the large-system limit, where the number of users and the spreading factor tend to infinity while their ratio and the number of transmit and receive antennas are kept constant. The performance of the joint CE-MUDD based on LMMSE channel estimation is compared to the spectral efficiencies of several receivers based on one-shot LMMSE channel estimation, in which the decoded data symbols are not utilized to refine the initial channel estimates. The results imply that the use of joint CE-MUDD significantly reduces rate loss due to transmission of pilot signals, especially for multiple-antenna systems. As a result, joint CE-MUDD can provide significant performance gains, compared to the receivers based on one-shot channel estimation.Comment: The paper was resubmitted to IEEE Trans. Inf. Theor

    Analysis of CDMA systems that are characterized by eigenvalue spectrum

    Full text link
    An approach by which to analyze the performance of the code division multiple access (CDMA) scheme, which is a core technology used in modern wireless communication systems, is provided. The approach characterizes the objective system by the eigenvalue spectrum of a cross-correlation matrix composed of signature sequences used in CDMA communication, which enables us to handle a wider class of CDMA systems beyond the basic model reported by Tanaka. The utility of the novel scheme is shown by analyzing a system in which the generation of signature sequences is designed for enhancing the orthogonality.Comment: 7 pages, 2 figure

    Dynamical replica theoretic analysis of CDMA detection dynamics

    Full text link
    We investigate the detection dynamics of the Gibbs sampler for code-division multiple access (CDMA) multiuser detection. Our approach is based upon dynamical replica theory which allows an analytic approximation to the dynamics. We use this tool to investigate the basins of attraction when phase coexistence occurs and examine its efficacy via comparison with Monte Carlo simulations.Comment: 18 pages, 2 figure

    Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method

    Get PDF
    For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD) is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD and turbo MUD, and is validated by numerical results for finite systems.Comment: To appear in the EURASIP Journal on Wireless Communication and Networking - Special Issue on Advanced Signal Processing Algorithms for Wireless Communication
    • …
    corecore