221 research outputs found

    Replica Analysis and Approximate Message Passing Decoder for Superposition Codes

    Full text link
    Superposition codes are efficient for the Additive White Gaussian Noise channel. We provide here a replica analysis of the performances of these codes for large signals. We also consider a Bayesian Approximate Message Passing decoder based on a belief-propagation approach, and discuss its performance using the density evolution technic. Our main findings are 1) for the sizes we can access, the message-passing decoder outperforms other decoders studied in the literature 2) its performance is limited by a sharp phase transition and 3) while these codes reach capacity as BB (a crucial parameter in the code) increases, the performance of the message passing decoder worsen as the phase transition goes to lower rates.Comment: 5 pages, 5 figures, To be presented at the 2014 IEEE International Symposium on Information Theor

    Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes

    Get PDF
    We study the approximate message-passing decoder for sparse superposition coding on the additive white Gaussian noise channel and extend our preliminary work [1]. We use heuristic statistical-physics-based tools such as the cavity and the replica methods for the statistical analysis of the scheme. While superposition codes asymptotically reach the Shannon capacity, we show that our iterative decoder is limited by a phase transition similar to the one that happens in Low Density Parity check codes. We consider two solutions to this problem, that both allow to reach the Shannon capacity: i) a power allocation strategy and ii) the use of spatial coupling, a novelty for these codes that appears to be promising. We present in particular simulations suggesting that spatial coupling is more robust and allows for better reconstruction at finite code lengths. Finally, we show empirically that the use of a fast Hadamard-based operator allows for an efficient reconstruction, both in terms of computational time and memory, and the ability to deal with very large messages.Comment: 40 pages, 18 figure

    Generalized Approximate Message-Passing Decoder for Universal Sparse Superposition Codes

    Get PDF
    Sparse superposition (SS) codes were originally proposed as a capacity-achieving communication scheme over the additive white Gaussian noise channel (AWGNC) [1]. Very recently, it was discovered that these codes are universal, in the sense that they achieve capacity over any memoryless channel under generalized approximate message-passing (GAMP) decoding [2], although this decoder has never been stated for SS codes. In this contribution we introduce the GAMP decoder for SS codes, we confirm empirically the universality of this communication scheme through its study on various channels and we provide the main analysis tools: state evolution and potential. We also compare the performance of GAMP with the Bayes-optimal MMSE decoder. We empirically illustrate that despite the presence of a phase transition preventing GAMP to reach the optimal performance, spatial coupling allows to boost the performance that eventually tends to capacity in a proper limit. We also prove that, in contrast with the AWGNC case, SS codes for binary input channels have a vanishing error floor in the limit of large codewords. Moreover, the performance of Hadamard-based encoders is assessed for practical implementations
    corecore