565 research outputs found

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Spoofing Detection in Voice Biometrics: Cochlear Modelling and Perceptually Motivated Features

    Full text link
    The automatic speaker verification (ASV) system is one of the most widely adopted biometric technology. However, ASV is vulnerable to spoofing attacks that can significantly affect its reliability. Among the different variants of spoofing attacks, replay attacks pose a major threat as they do not require any expert knowledge to implement and are difficult to detect. The primary focus of this thesis is on understanding and developing biologically inspired models and techniques to detect replay attacks. This thesis develops a novel framework for implementing an active cochlear filter model as a frontend spectral analyser for spoofing attack detection to leverage the remarkable sensitivity and selectivity of the mammalian auditory system over a broad range of intensities and frequencies. In particular, the developed model aims to mimic the active mechanism in the cochlea, enabling sharp frequency tuning and level-dependent compression, which amplifies and tune to low energy signal to make a broad dynamic range of signals audible. Experimental evaluations of the developed models in the context of replay detection systems exhibit a significant performance improvement, highlighting the potential benefits of the use of biologically inspired front ends. In addition, since replay detection relies on the discerning channel characteristics and the effect of the acoustic environment, acoustic cues essential for speech perception such as amplitude- and frequency-modulation (AM, FM) features are also investigated. Finally, to capture discriminative cues present in the temporal domain, the temporal masking psychoacoustic phenomenon in auditory processing is exploited, and the usefulness of the masking pattern is investigated. This led to a novel feature parameterisation which helps improve replay attack detection

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    When the Differences in Frequency Domain are Compensated: Understanding and Defeating Modulated Replay Attacks on Automatic Speech Recognition

    Full text link
    Automatic speech recognition (ASR) systems have been widely deployed in modern smart devices to provide convenient and diverse voice-controlled services. Since ASR systems are vulnerable to audio replay attacks that can spoof and mislead ASR systems, a number of defense systems have been proposed to identify replayed audio signals based on the speakers' unique acoustic features in the frequency domain. In this paper, we uncover a new type of replay attack called modulated replay attack, which can bypass the existing frequency domain based defense systems. The basic idea is to compensate for the frequency distortion of a given electronic speaker using an inverse filter that is customized to the speaker's transform characteristics. Our experiments on real smart devices confirm the modulated replay attacks can successfully escape the existing detection mechanisms that rely on identifying suspicious features in the frequency domain. To defeat modulated replay attacks, we design and implement a countermeasure named DualGuard. We discover and formally prove that no matter how the replay audio signals could be modulated, the replay attacks will either leave ringing artifacts in the time domain or cause spectrum distortion in the frequency domain. Therefore, by jointly checking suspicious features in both frequency and time domains, DualGuard can successfully detect various replay attacks including the modulated replay attacks. We implement a prototype of DualGuard on a popular voice interactive platform, ReSpeaker Core v2. The experimental results show DualGuard can achieve 98% accuracy on detecting modulated replay attacks.Comment: 17 pages, 24 figures, In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS' 20

    Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems

    Full text link
    Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks

    Secure Automatic Speaker Verification Systems

    Get PDF
    The growing number of voice-enabled devices and applications consider automatic speaker verification (ASV) a fundamental component. However, maximum outreach for ASV in critical domains e.g., financial services and health care, is not possible unless we overcome security breaches caused by voice cloning, and replayed audios collectively known as the spoofing attacks. The audio spoofing attacks over ASV systems on one hand strictly limit the usability of voice-enabled applications; and on the other hand, the counterfeiter also remains untraceable. Therefore, to overcome these vulnerabilities, a secure ASV (SASV) system is presented in this dissertation. The proposed SASV system is based on the concept of novel sign modified acoustic local ternary pattern (sm-ALTP) features and asymmetric bagging-based classifier-ensemble. The proposed audio representation approach clusters the high and low-frequency components in audio frames by normally distributing frequency components against a convex function. Then, the neighborhood statistics are applied to capture the user specific vocal tract information. This information is then utilized by the classifier ensemble that is based on the concept of weighted normalized voting rule to detect various spoofing attacks. Contrary to the existing ASV systems, the proposed SASV system not only detects the conventional spoofing attacks (i.e. voice cloning, and replays), but also the new attacks that are still unexplored by the research community and a requirement of the future. In this regard, a concept of cloned replays is presented in this dissertation, where, replayed audios contains the microphone characteristics as well as the voice cloning artifacts. This depicts the scenario when voice cloning is applied in real-time. The voice cloning artifacts suppresses the microphone characteristics thus fails replay detection modules and similarly with the amalgamation of microphone characteristics the voice cloning detection gets deceived. Furthermore, the proposed scheme can be utilized to obtain a possible clue against the counterfeiter through voice cloning algorithm detection module that is also a novel concept proposed in this dissertation. The voice cloning algorithm detection module determines the voice cloning algorithm used to generate the fake audios. Overall, the proposed SASV system simultaneously verifies the bonafide speakers and detects the voice cloning attack, cloning algorithm used to synthesize cloned audio (in the defined settings), and voice-replay attacks over the ASVspoof 2019 dataset. In addition, the proposed method detects the voice replay and cloned voice replay attacks over the VSDC dataset. Rigorous experimentation against state-of-the-art approaches also confirms the robustness of the proposed research

    Biometric liveness checking using multimodal fuzzy fusion

    Get PDF

    Voice Spoofing Countermeasures: Taxonomy, State-of-the-art, experimental analysis of generalizability, open challenges, and the way forward

    Full text link
    Malicious actors may seek to use different voice-spoofing attacks to fool ASV systems and even use them for spreading misinformation. Various countermeasures have been proposed to detect these spoofing attacks. Due to the extensive work done on spoofing detection in automated speaker verification (ASV) systems in the last 6-7 years, there is a need to classify the research and perform qualitative and quantitative comparisons on state-of-the-art countermeasures. Additionally, no existing survey paper has reviewed integrated solutions to voice spoofing evaluation and speaker verification, adversarial/antiforensics attacks on spoofing countermeasures, and ASV itself, or unified solutions to detect multiple attacks using a single model. Further, no work has been done to provide an apples-to-apples comparison of published countermeasures in order to assess their generalizability by evaluating them across corpora. In this work, we conduct a review of the literature on spoofing detection using hand-crafted features, deep learning, end-to-end, and universal spoofing countermeasure solutions to detect speech synthesis (SS), voice conversion (VC), and replay attacks. Additionally, we also review integrated solutions to voice spoofing evaluation and speaker verification, adversarial and anti-forensics attacks on voice countermeasures, and ASV. The limitations and challenges of the existing spoofing countermeasures are also presented. We report the performance of these countermeasures on several datasets and evaluate them across corpora. For the experiments, we employ the ASVspoof2019 and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classifiers. (For reproduceability of the results, the code of the test bed can be found in our GitHub Repository

    Deep Generative Variational Autoencoding for Replay Spoof Detection in Automatic Speaker Verification

    Get PDF
    Automatic speaker verification (ASV) systems are highly vulnerable to presentation attacks, also called spoofing attacks. Replay is among the simplest attacks to mount - yet difficult to detect reliably. The generalization failure of spoofing countermeasures (CMs) has driven the community to study various alternative deep learning CMs. The majority of them are supervised approaches that learn a human-spoof discriminator. In this paper, we advocate a different, deep generative approach that leverages from powerful unsupervised manifold learning in classification. The potential benefits include the possibility to sample new data, and to obtain insights to the latent features of genuine and spoofed speech. To this end, we propose to use variational autoencoders (VAEs) as an alternative backend for replay attack detection, via three alternative models that differ in their class-conditioning. The first one, similar to the use of Gaussian mixture models (GMMs) in spoof detection, is to train independently two VAEs - one for each class. The second one is to train a single conditional model (C-VAE) by injecting a one-hot class label vector to the encoder and decoder networks. Our final proposal integrates an auxiliary classifier to guide the learning of the latent space. Our experimental results using constant-Q cepstral coefficient (CQCC) features on the ASVspoof 2017 and 2019 physical access subtask datasets indicate that the C-VAE offers substantial improvement in comparison to training two separate VAEs for each class. On the 2019 dataset, the C-VAE outperforms the VAE and the baseline GMM by an absolute 9-10% in both equal error rate (EER) and tandem detection cost function (t-DCF) metrics. Finally, we propose VAE residuals --- the absolute difference of the original input and the reconstruction as features for spoofing detection. The proposed frontend approach augmented with a convolutional neural network classifier demonstrated substantial improvement over the VAE backend use case
    • …
    corecore