2,676 research outputs found

    ZigBee/ZigBee PRO security assessment based on compromised cryptographic keys

    Get PDF
    Sensor networks have many applications in monitoring and controlling of environmental properties such as sound, acceleration, vibration and temperature. Due to limited resources in computation capability, memory and energy, they are vulnerable to many kinds of attacks. The ZigBee specification based on the 802.15.4 standard, defines a set of layers specifically suited to sensor networks. These layers support secure messaging using symmetric cryptographic. This paper presents two different ways for grabbing the cryptographic key in ZigBee: remote attack and physical attack. It also surveys and categorizes some additional attacks which can be performed on ZigBee networks: eavesdropping, spoofing, replay and DoS attacks at different layers. From this analysis, it is shown that some vulnerabilities still in the existing security schema in ZigBee technology.Les xarxes de sensors tenen moltes aplicacions en el control i la monitorització de les propietats del medi ambient, com ara el so, l¿acceleració, la vibració i la temperatura. A causa dels limitats recursos en la capacitat de càlcul, la memòria i l'energia són vulnerables a molts tipus d'atacs. L'especificació ZigBee basada en l'estàndard 802.15.4, defineix un conjunt de capes, adaptada específicament per a xarxes de sensors. Aquestes capes suporten missatgeria segura mitjançant criptografia simètrica. Aquest article presenta dues formes diferents per agafar la clau de xifrat en ZigBee: atac a distància i atacs físics. També les enquesta i classifica alguns atacs addicionals que es poden realitzar en les xarxes ZigBee: espionatge, falsificació, reproducció i atacs DoS en les diferents capes. A partir d'aquesta anàlisi, es demostren algunes vulnerabilitats existents en l'esquema de seguretat en tecnologia ZigBee.Las redes de sensores tienen muchas aplicaciones en el control y la monitorización de las propiedades del medio ambiente, como el sonido, la aceleración, la vibración y la temperatura. Debido a los limitados recursos en la capacidad de cálculo, la memoria y la energía son vulnerables a muchos tipos de ataques. La especificación ZigBee basada en el estándar 802.15.4, define un conjunto de capas, adaptada específicamente para redes de sensores. Estas capas soportan mensajería segura mediante criptografía simétrica. Este artículo presenta dos formas diferentes para coger la clave de cifrado en ZigBee: ataque a distancia y ataques físicos. También las encuesta y clasifica algunos ataques adicionales que se pueden realizar en las redes ZigBee: espionaje, falsificación, reproducción y ataques DoS en las diferentes capas. A partir de este análisis, se demuestran algunas vulnerabilidades existentes en el esquema de seguridad en tecnología ZigBee

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table
    corecore