337 research outputs found

    3D Dynamic Motion Planning for Robot-Assisted Cannula Flexible Needle Insertion into Soft Tissue

    Get PDF
    In robot-assisted needle-based medical procedures, insertion motion planning is a crucial aspect. 3D dynamic motion planning for a cannula flexible needle is challenging with regard to the nonholonomic motion of the needle tip, the presence of anatomic obstacles or sensitive organs in the needle path, as well as uncertainties due to the dynamic environment caused by the movements and deformations of the organs. The kinematics of the cannula flexible needle is calculated in this paper. Based on a rapid and robust static motion planning algorithm, referred to as greedy heuristic and reachability-guided rapidly-exploring random trees, a 3D dynamic motion planner is developed by using replanning. Aiming at the large detour problem, the convergence problem and the accuracy problem that replanning encounters, three novel strategies are proposed and integrated into the conventional replanning algorithm. Comparisons are made between algorithms with and without the strategies to verify their validity. Simulations showed that the proposed algorithm can overcome the above-noted problems to realize real-time replanning in a 3D dynamic environment, which is appropriate for intraoperative planning. © 2016 Author

    Fast and adaptive fractal tree-based path planning for programmable bevel tip steerable needles

    Get PDF
    © 2016 IEEE. Steerable needles are a promising technology for minimally invasive surgery, as they can provide access to difficult to reach locations while avoiding delicate anatomical regions. However, due to the unpredictable tissue deformation associated with needle insertion and the complexity of many surgical scenarios, a real-time path planning algorithm with high update frequency would be advantageous. Real-time path planning for nonholonomic systems is commonly used in a broad variety of fields, ranging from aerospace to submarine navigation. In this letter, we propose to take advantage of the architecture of graphics processing units (GPUs) to apply fractal theory and thus parallelize real-time path planning computation. This novel approach, termed adaptive fractal trees (AFT), allows for the creation of a database of paths covering the entire domain, which are dense, invariant, procedurally produced, adaptable in size, and present a recursive structure. The generated cache of paths can in turn be analyzed in parallel to determine the most suitable path in a fraction of a second. The ability to cope with nonholonomic constraints, as well as constraints in the space of states of any complexity or number, is intrinsic to the AFT approach, rendering it highly versatile. Three-dimensional (3-D) simulations applied to needle steering in neurosurgery show that our approach can successfully compute paths in real-time, enabling complex brain navigation

    Dynamic Path Planning and Replanning for Mobile Robots using RRT*

    Full text link
    It is necessary for a mobile robot to be able to efficiently plan a path from its starting, or current, location to a desired goal location. This is a trivial task when the environment is static. However, the operational environment of the robot is rarely static, and it often has many moving obstacles. The robot may encounter one, or many, of these unknown and unpredictable moving obstacles. The robot will need to decide how to proceed when one of these obstacles is obstructing it's path. A method of dynamic replanning using RRT* is presented. The robot will modify it's current plan when an unknown random moving obstacle obstructs the path. Various experimental results show the effectiveness of the proposed method

    Collided path replanning in dynamic environments using RRT and Cell decomposition algorithms

    Get PDF
    The motion planning is an important part of robots’ models. It is responsible for robot’s movements. In this work, the cell decomposition algorithm is used to find a spatial path on preliminary static workspaces, and then, the rapidly exploring random tree algorithm (RRT) is used to validate this path on the actual workspace. Two methods have been proposed to enhance the omnidirectional robot’s navigation on partially changed workspace. First, the planner creates a RRT tree and biases its growth toward the path’s points in ordered form. The planner reduces the probability of choosing the next point when a collision is detected, which in turn increases the RRT’s expansion on the free space. The second method uses a straight planner to connect path’s points. If a collision is detected, the planner places RRTs on both sides of the collided segment. The proposed methods are compared with the others approaches, and the simulation shows better results in term of efficiency and completeness.Plánování pohybu robota je důležitou součástí modelování funkcí robotů. Plán řídí pohyby robota. V této práci se algoritmus rozkladu na buňky používá k nalezení cesty pracovní plochou a algoritmus prozkoumání náhodného stromu (RRT) k ověření cesty skutečným prostorem. Byly navrženy dvě metody ke zlepšení navigace všesměrové pohyblivého robota částečně změněnou pracovní plochou. Za prvé, plánovač vytvoří RRT strom a vychyluje jeho růst směrem k bodu na cestě. Plánovač snižuje pravděpodobnost výběru dalšího bodu, když je detekována kolize, což zase zvyšuje expanzi RRT na volném prostoru. Druhá metoda používá shodný plánovač pro napojení bodů cesty. Pokud je detekována kolize, plánovač upravuje RRT na obou stranách kolizního segmentu. Navrhované metody jsou porovnávány s dalšími používanými přístupy, přečemž simulace ukazuje lepší výsledky z hlediska účinnosti a úplnosti plánování cesty.The motion planning is an important part of robots’ models. It is responsible for robot’s movements. In this work, the cell decomposition algorithm is used to find a spatial path on preliminary static workspaces, and then, the rapidly exploring random tree algorithm (RRT) is used to validate this path on the actual workspace. Two methods have been proposed to enhance the omnidirectional robot’s navigation on partially changed workspace. First, the planner creates a RRT tree and biases its growth toward the path’s points in ordered form. The planner reduces the probability of choosing the next point when a collision is detected, which in turn increases the RRT’s expansion on the free space. The second method uses a straight planner to connect path’s points. If a collision is detected, the planner places RRTs on both sides of the collided segment. The proposed methods are compared with the others approaches, and the simulation shows better results in term of efficiency and completeness

    Expert Systems and Advanced Algorithms in Mobile Robots Path Planning

    Get PDF
    Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických platforem. Technicky je realizace plánování pohybu z globální úrovně převedena do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí, včetně omezení. V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest, přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT), prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky, resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké koridory či překážky s proměnnou polohou v čase. V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního systému, který zlepšuje jejich chování. Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení. Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických přístupů v prostředí Minitab a Matlab.Motion planning is an active field in robotics domain, it is responsible for translating high-level specifications of a motion task into low-level sequences of motion commands, which respect the robot and the environments constraints. In this work many path-planning approaches have been reviewed, mainly, the rapidly exploring random tree algorithm (RRT), the cell decomposition approaches (CD), and the application of fuzzy expert system (FES) in motion planning. These approaches have been adapted to solve some of mobile robots motion-planning problems efficiently, i.e. motion planning in small and narrow areas, the global path planning in dynamic workspace, and the improvement of planning efficiency using available information about the working environments. New planning approaches have been introduced based on exploiting and combining the advantages of cell-decomposition, and RRT, in addition to use other tools i.e. fuzzy expert system, to increase the efficiency and completeness of finding a solution. This thesis also proposed solutions for other motion-planning problems, for example the identification of narrow area and the important regions when using sampling-based algorithms, the path shortening for RRT, and the problem of planning a safe path. All proposed methods were implemented and simulated in Matlab to compare them with other methods, in different workspaces and under different conditions. Moreover, the results are evaluated by statistical methods using Matlab and Minitab environments.

    Collision-Free Humanoid Reaching: Past, Present and Future

    Get PDF

    Automatic motion of manipulator using sampling based motion planning algorithms - application in service robotics

    Get PDF
    The thesis presents new approaches for autonomous motion execution of a robotic arm. The calculation of the motion is called motion planning and requires the computation of robot arm's path. The text covers the calculation of the path and several algorithms have been therefore implemented and tested in several real scenarios. The work focuses on sampling based planners, which means that the path is created by connecting explicitly random generated points in the free space. The algorithms can be divided into three categories: those that are working in configuration space(C-Space)(C- Space is the set of all possible joint angles of a robotic arm) , the mixed approaches using both Cartesian and C-Space and those that are using only the Cartesian space. Although Cartesian space seems more appropriate, due to dimensionality, this work illustrates that the C-Space planners can achieve comparable or better results. Initially an enhanced approach for efficient collision detection in C-Space, used by the planners, is presented. Afterwards the N dimensional cuboid region, notated as Rq, is defined. The Rq configures the C-Space so that the sampling is done close to a selected, called center, cell. The approach is enhanced by the decomposition of the Cartesian space into cells. A cell is selected appropriately if: (a) is closer to the target position and (b) lies inside the constraints. Inverse kinematics(IK) are applied to calculate a centre configuration used later by the Rq. The CellBiRRT is proposed and combines all the features. Continuously mixed approaches that do not require goal configuration or an analytic solution of IK are presented. Rq regions as well as Cells are also integrated in these approaches. A Cartesian sampling based planner using quaternions for linear interpolation is also proposed and tested. The common feature of the so far algorithms is the feasibility which is normally against the optimality. Therefore an additional part of this work deals with the optimality of the path. An enhanced approach of CellBiRRT, called CellBiRRT*, is developed and promises to compute shorter paths in a reasonable time. An on-line method using both CellBiRRT and CellBiRRT* is proposed where the path of the robot arm is improved and recalculated even if sudden changes in the environment are detected. Benchmarking with the state of the art algorithms show the good performance of the proposed approaches. The good performance makes the algorithms suitable for real time applications. In this work several applications are described: Manipulative skills, an approach for an semi-autonomous control of the robot arm and a motion planning library. The motion planning library provides the necessary interface for easy use and further development of the motion planning algorithms. It can be used as the part connecting the manipulative skill designing and the motion of a robotic arm
    corecore