6 research outputs found

    L-Systems for Measuring Repetitiveness

    Get PDF
    In order to use them for compression, we extend L-systems (without ?-rules) with two parameters d and n, and also a coding ?, which determines unambiguously a string w = ?(?^d(s))[1:n], where ? is the morphism of the system, and s is its axiom. The length of the shortest description of an L-system generating w is known as ?, and it is arguably a relevant measure of repetitiveness that builds on the self-similarities that arise in the sequence. In this paper, we deepen the study of the measure ? and its relation with a better-established measure called ?, which builds on substring complexity. Our results show that ? and ? are largely orthogonal, in the sense that one can be much larger than the other, depending on the case. This suggests that both mechanisms capture different kinds of regularities related to repetitiveness. We then show that the recently introduced NU-systems, which combine the capabilities of L-systems with bidirectional macro schemes, can be asymptotically strictly smaller than both mechanisms for the same fixed string family, which makes the size ? of the smallest NU-system the unique smallest reachable repetitiveness measure to date. We conclude that in order to achieve better compression, we should combine morphism substitution with copy-paste mechanisms

    Critical Exponents and Stabilizers of Infinite Words

    Get PDF
    This thesis concerns infinite words over finite alphabets. It contributes to two topics in this area: critical exponents and stabilizers. Let w be a right-infinite word defined over a finite alphabet. The critical exponent of w is the supremum of the set of exponents r such that w contains an r-power as a subword. Most of the thesis (Chapters 3 through 7) is devoted to critical exponents. Chapter 3 is a survey of previous research on critical exponents and repetitions in morphic words. In Chapter 4 we prove that every real number greater than 1 is the critical exponent of some right-infinite word over some finite alphabet. Our proof is constructive. In Chapter 5 we characterize critical exponents of pure morphic words generated by uniform binary morphisms. We also give an explicit formula to compute these critical exponents, based on a well-defined prefix of the infinite word. In Chapter 6 we generalize our results to pure morphic words generated by non-erasing morphisms over any finite alphabet. We prove that critical exponents of such words are algebraic, of a degree bounded by the alphabet size. Under certain conditions, our proof implies an algorithm for computing the critical exponent. We demonstrate our method by computing the critical exponent of some families of infinite words. In particular, in Chapter 7 we compute the critical exponent of the Arshon word of order n for n ≥ 3. The stabilizer of an infinite word w defined over a finite alphabet Σ is the set of morphisms f: Σ*→Σ* that fix w. In Chapter 8 we study various problems related to stabilizers and their generators. We show that over a binary alphabet, there exist stabilizers with at least n generators for all n. Over a ternary alphabet, the monoid of morphisms generating a given infinite word by iteration can be infinitely generated, even when the word is generated by iterating an invertible primitive morphism. Stabilizers of strict epistandard words are cyclic when non-trivial, while stabilizers of ultimately strict epistandard words are always non-trivial. For this latter family of words, we give a characterization of stabilizer elements. We conclude with a list of open problems, including a new problem that has not been addressed yet: the D0L repetition threshold

    Overlap-Free Words and Generalizations

    Get PDF
    The study of combinatorics on words dates back at least to the beginning of the 20th century and the work of Axel Thue. Thue was the first to give an example of an infinite word over a three letter alphabet that contains no squares (identical adjacent blocks) xx. This result was eventually used to solve some longstanding open problems in algebra and has remarkable connections to other areas of mathematics and computer science as well. This thesis will consider several different generalizations of Thue's work. In particular we shall study the properties of infinite words avoiding various types of repetitions. In Chapter 1 we introduce the theory of combinatorics on words. We present the basic definitions and give an historical survey of the area. In Chapter 2 we consider the work of Thue in more detail. We present various well-known properties of the Thue-Morse word and give some generalizations. We examine Fife's characterization of the infinite overlap-free words and give a simpler proof of this result. We also present some applications to transcendental number theory, generalizing a classical result of Mahler. In Chapter 3 we generalize a result of Seebold by showing that the only infinite 7/3-power-free binary words that can be obtained by iterating a morphism are the Thue-Morse word and its complement. In Chapter 4 we continue our study of overlap-free and 7/3-power-free words. We discuss the squares that can appear as subwords of these words. We also show that it is possible to construct infinite 7/3-power-free binary words containing infinitely many overlaps. In Chapter 5 we consider certain questions of language theory. In particular, we examine the context-freeness of the set of words containing overlaps. We show that over a three-letter alphabet, this set is not context-free, and over a two-letter alphabet, we show that this set cannot be unambiguously context-free. In Chapter 6 we construct infinite words over a four-letter alphabet that avoid squares in any arithmetic progression of odd difference. Our constructions are based on properties of the paperfolding words. We use these infinite words to construct non-repetitive tilings of the integer lattice. In Chapter 7 we consider approximate squares rather than squares. We give constructions of infinite words that avoid such approximate squares. In Chapter 8 we conclude the work and present some open problems
    corecore