1,489 research outputs found

    Testing real-time multi input-output systems

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tioco-M theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtioco^M relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtioco^

    Testing multi input-output real-time systems (Extended version)

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tiocoM theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtiocoM relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtiocoM

    Talking quiescence: a rigorous theory that supports parallel composition, action hiding and determinisation

    Get PDF
    The notion of quiescence - the absence of outputs - is vital in both behavioural modelling and testing theory. Although the need for quiescence was already recognised in the 90s, it has only been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions. Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture quiescent behaviour. We present the building blocks for a comprehensive theory on QTSs supporting parallel composition, action hiding and determinisation. In particular, we prove that these operations preserve all the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs, allowing even IOTSs as input that already contain some quiescent transitions. As an important application, we show how our QTS framework simplifies the fundamental model-based testing theory formalised around ioco.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Testing times: on model-driven test generation for non-deterministic real-time systems

    Get PDF
    Summary form only given. Although testing has always been the most important technique for the validation of software systems it has only become a topic of serious academic research in the past decade or so. In this period research on the use of formal methods for model-driven test generation and execution of functional test cases has led to a number of promising methods and tools for systematic black-box testing of systems, examples are based on A. Belinfante et al. (1999), J. Tretmans and E. Brinksma (2003), J.-C. Fernandez et al. (1996) and J.-C. Fernandez et al. (1997). Most of these approaches are limited to the qualitative behaviour of systems, and exclude quantitative aspects such as real-time properties. The explosive growth of embedded software, however, has also caused a growing need to extend existing testing theories to the testing of real-time reactive systems. In our presentation we present an extension of Tretmans' ioco theory for test generation as stated in J. Tretmans (1996) for input/output transition systems that includes real-time behaviour

    A test generation framework for quiescent real-time systems

    Get PDF
    We present an extension of Tretmans theory and algorithm for test generation for input-output transition systems to real-time systems. Our treatment is based on an operational interpretation of the notion of quiescence in the context of real-time behaviour. This gives rise to a family of implementation relations parameterized by observation durations for quiescence. We define a nondeterministic (parameterized) test generation algorithm that generates test cases that are sound with respect to the corresponding implementation relation. Also, the test generation is exhaustive in the sense that for each non-conforming implementation a test case can be generated that detects the non-conformance

    Work-in-progress Assume-guarantee reasoning with ioco

    Get PDF
    This paper presents a combination between the assume-guarantee paradigm and the testing relation ioco. The assume-guarantee paradigm is a ā€divide and conquerā€ technique that decomposes the verification of a system into smaller tasks that involve the verification of its components. The principal aspect of assume-guarantee reasoning is to consider each component separately, while taking into account assumptions about the context of the component. The testing relation ioco is a formal conformance relation for model-based testing that works on labeled transition systems. Our main result shows that, with certain restrictions, assume-guarantee reasoning can be applied in the context of ioco. This enables testing ioco-conformance of a system by testing its components separately

    Generating Complete and Finite Test Suite for ioco: Is It Possible?

    Get PDF
    Testing from Input/Output Transition Systems has been intensely investigated. The conformance between the implementation and the specification is often determined by the so-called ioco-relation. However, generating tests for ioco is usually hindered by the problem of conflicts between inputs and outputs. Moreover, the generation is mainly based on nondeterministic methods, which may deliver complete test suites but require an unbounded number of executions. In this paper, we investigate whether it is possible to construct a finite test suite which is complete in a predefined fault domain for the classical ioco relation even in the presence of input/output conflicts. We demonstrate that it is possible under certain assumptions about the specification and implementation, by proposing a method for complete test generation, based on a traditional method developed for FSM.Comment: In Proceedings MBT 2014, arXiv:1403.704
    • ā€¦
    corecore